Why chlorine has highest electron affinity than fluorine?
This is because the atomic radius increases down a group. The electron gained ends up in the outermost shell. ... Fluorine, which is higher up the group then chlorine, has a lower electron affinity. This is because the electrons in the outermost shell of a fluorine atom are closer together.
Answer: 3.5 moles
Explanation:
Based on Avogadro's law:
1 mole of any substance has 6.02 x 10^23 molecules
So, 1 mole of SiO4 = 6.02 x 10^23 molecules
Zmoles of SiO4 = 2.1 x 10^{24} molecules
To get the value of Z, cross multiply:
(2.1 x 10^{24} molecules x 1mole) = (6.02 x 10^23 molecules x Z moles)
2.1 x 10^{24} molecules = (6.02 x 10^23 x Z)
Z = (2.1 x 10^{24}) ➗ (6.02 x 10^23)
Z = 3.5 moles
Thus, there are 3.5 moles of SiO4.
Answer:
54.4 mol
Explanation:
the equation for complete combustion of butane is
2C₄H₁₀ + 13O₂ ---> 8CO₂ + 10H₂O
molar ratio of butane to CO₂ is 2:8
this means that for every 2 mol of butane that reacts with excess oxygen, 8 mol of CO₂ is produced
when 2 mol of C₄H₁₀ reacts - 8 mol of CO₂ is produced
therefore when 13.6 mol of C₄H₁₀ reacts - 8/2 x 13.6 mol = 54.4 mol of CO₂ is produced
therefore 54.4 mol of CO₂ is produced
Answer:
A tritium is produced.
Explanation:
Combining two additional neutrons to the nucleus of the hydrogen atom makes it a tritium, Hydrogen-3.
neutron is designated ¹₀n; this shows a mass number of 1 and no atomic number
Hydrogen-1 is designated as ₁¹H; a mass number of 1 and atomic number of 1. This particle is actually more like a proton.
Combining both:
₁¹H + 2¹₀n → ³₁H
This is a nuclear reaction and in balancing such reaction equation, mass numbers and atomic numbers must be conserved.