Many materials produce static charge
Answer:
Momentum after collision will be 6000 kgm/sec
Explanation:
We have given mass of the whale = 1000
Initial velocity v = 6 m/sec
It collides with other mass of 200 kg which is at stationary
Initial momentum of the whale = 1000×6 = 6000 kgm/sec
We have to find the momentum after collision
From conservation of momentum
Initial momentum = final momentum
So final momentum = 6000 kgm/sec
Answer:
t = 0.1111 s
Explanation:
Let's reduce the magnitudes to the SI system
d = 120 mm (1m / 1000 mm)
d= 0.120 m
w = 540 rpm (2pi rad / 1 rev) (1 min / 60s)
w= 56.55 rad / s
When at maximum speed we can use angular kinematic relationships to find the time for a sperm revolution with zero angular acceleration
W = θ / t
t = θ / w
t = 2π / 56.55
t = 0.1111 s
<span>The best way to cool soft and thick foods when using the refrigerator is by having them to be placed and poured on a pan or another way is by having them to be placed in one container in which they are in a water bath, to be heated of.</span>
Answer:
a)
, b) 
Explanation:
The magnitude of torque is a form of moment, that is, a product of force and lever arm (distance), and force is the product of mass and acceleration for rotating systems with constant mass. That is:



Where
is the angular acceleration, which is constant as torque is constant. Angular deceleration experimented by the unpowered flywheel is:


Now, angular velocities of the unpowered flywheel at 50 seconds and 100 seconds are, respectively:
a) t = 50 s.


b) t = 100 s.
Given that friction is of reactive nature. Frictional torque works on the unpowered flywheel until angular velocity is reduced to zero, whose instant is:


Since
, then the angular velocity is equal to zero. Therefore:
