Answer:
1.029
Explanation:
1.0090 can also be looked at as "1.009"
0.02 can also be looked at as "0.020"
I think of it as 20+9 which is 29. There for your answer should be 1.029. There are no measurement rules applying to this equation since they are both in centimeters. So you don't have to convert anything.
It’s will be B because the circuit had a open or close so if that doesn’t work than it’s because it’s open
Answer:
The frequency of sound heard by the boy is 1181 Hz.
Explanation:
Given that,
Frequency of sound from alarm 
Speed = -8.25 m/s
Negative sign show the boy riding away from the car
Speed of sound = 343
We need to calculate the heard frequency
Using formula of frequency

Where,
= frequency of source
= speed of observer
= speed of source
= speed of sound
Put the value into the formula

here, source is at rest


Hence, The frequency of sound heard by the boy is 1181 Hz.
Answer:
t=40s,
Explanation:
If you can swim in still water at 0.5m/s, the shortest time it would take you to swim from bank to bank across a 20m wide river, if the water flows downstream at a rate of 1.5m/s, is most nearly:
from the question the swimmer will have a velocity which is equal to the sum of the speed of the water and the velocity to swi across the bank
Vt=v1+v2
the time is takes to swim across the bank will be
DY=Dv*t
DY=distance across the bank
Dv=ther velocity of the swimmer across the bank
t=20/ 0.5m/s,
t=40s, time it takes to swim across the bank
velocity is the rate of displacement
displacement is distance covered in a specific direction