Answer:
F > W * sin(α)
Explanation:
The force needed for the box to start sliding up depends on the incline (α).
The external forces acting on the box would be the weight, the normal reaction and the lifting force that is applied to make it slide up.
These forces can be decomposed on their normal and tangential (to the slide plane) components.
The weight will be split into
Wn = W * cos(α) (in normal direction)
Wt = W * sin(α) (in tangential direction)
The normal reaction will be alligned with the normal axis, and will be equal to -Wn
N = -W* cos(α) (in normal direction)
To mke the box slide up, a force must be applied, that is opposite to the tangential component of the weight and at least a little larger
F > |-W * sin(α)| (in tangential direction)
547 kilometres, or 340 miles
Answer:
Explanation:
Solar energy production encompasses several power sources, both passive and active. It’s important to differentiate among the different types of solar energy production systems since it’s not uncommon for the average homeowner to confuse them. We’ll start with a diagram of solar energy hitting the earth surface.
Then we’ll present diagrams and discuss photovoltaic solar, solar hot water, and concentrated solar power. The easiest way to think about these is: am I using solar energy to heat water (solar hot water and CSP) or am I converting sunlight directly into electricity (photovoltaic cells)?
Answer:
the radius of bigger loop = 6 cm
Explanation:
given,
two concentric current loops
smaller loop radius = 3.6 cm
]current in smaller loop = 12 A
current in the bigger loop = 20 A
magnetic field at the center of loop = 0
Radius of the bigger loop = ?


now, on solving


= 
= 6 cm
hence, the radius of bigger loop = 6 cm
Explanation:
Below is an attachment containing the solution.