Answer:
Explanation:
gravitational acceleration of meteoroid
= GM / R²
M is mass of planet , R is radius of orbit of meteoroid from the Centre of the planet .
R = (.9 x 6370 + 600 )x 10³ m
= 6333 x 10³ m
M , mass of the planet = 5.97 x 10²⁴ kg .
gravitational acceleration of meteoroid
= GM / R²
= (6.67 x 10⁻¹¹ x 5.97 x 10²⁴ kg / (6333 x 10³ m)²
9.92m/s²
Answer:
B ) Ascend using my buddy alternative air source / make an emergency Ascent
Explanation:
From the description it can be seen his buddy is close by of which he can easily use the alternative air source. Also we can see that he is closer to the water surface than his buddy, of which controlled emergency swimming ascent is highly favourable in this condition.
Answer:
16.26 cm in front of the mirror
Explanation:
Using,
1/f = 1/u+1/v....................... Equation 1
Where f = focal focal length of the concave mirror, u = object distance, v = image distance.
make v the subject of the equation
v = fu/(u-f)................... Equation 2
Note: The focal length of a concave mirror is positive
Using the real- is- positive convention
Given: f = 22/2 = 11 cm, u = 34 cm.
Substitute into equation 2
v = (34×11)/(34-11)
v = 374/23
v = 16.26 cm.
The image will be formed 16.26 cm in front of the mirror.
<span>For the orbitals that designate to be degenerate in a many-electron system, the following quantum numbers should be equal:
1- principle quantum number (n) : this describes the most probable distance of the electron from the nucleus
2- o</span><span>rbital angular momentum quantum number (l) : this determines the shape of the orbital </span>
It is gonna be C 0.37 and 19.1