Answer:
A) 37 m
Explanation:
The car is moving of uniformly accelerated motion, so the distance it covers can be calculated by using the following SUVAT equation:
(1)
where
v = 0 m/s is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d is the length of the skid
We need to find the acceleration first. We know that the force responsible for the (de)celeration is the force of friction, so:

where
m = 1000 kg is the mass of the car
is the coefficient of friction
a is the deceleration of the car
g = 9.8 m/s^2 is the acceleration due to gravity
The negative sign is due to the fact that the force of friction is against the motion of the car, so the sign of the acceleration will be negative because the car is slowing down. From this equation, we find:

And we can substitute it into eq.(1) to find d:

Answer:
d²x/dt² = - 4dx/dt - 4x is the required differential equation.
Explanation:
Since the spring force F = kx where k is the spring constant and x its extension = 2.45 equals the weight of the 4 kg mass,
F = mg
kx = mg
k = mg/x
= 4 kg × 9.8 m/s²/2.45 m
= 39.2 kgm/s²/2.45 m
= 16 N/m
Now the drag force f = 16v where v is the velocity of the mass.
We now write an equation of motion for the forces on the mass. So,
F + f = ma (since both the drag force and spring force are in the same direction)where a = the acceleration of the mass
-kx - 16v = 4a
-16x - 16v = 4a
16x + 16v = -4a
4x + 4v = -a where v = dx/dt and a = d²x/dt²
4x + 4dx/dt = -d²x/dt²
d²x/dt² = - 4dx/dt - 4x which is the required differential equation
Force required to accelerate 10 kg object to 5.9 m/s/s ?
Mass = 10 kg
Acceleration = 5.9 m/s^2
Force = Mass * Acceleration
Force = 10 kg * 5.9 m/s^2
Force = 59 kg m /s^2 = 59 N
<span>For hydrolysis to monosaccharides, one molecule of a disaccharide needs only one molecule of water.
C12H22O11 (sucrose) + H2O = C6H12O6 (glucose) + C6H12O6 (fructose)
Structurally, a disaccharide molecule may be viewed as a product formed by the condensation of two molecules of monosaccharides with the elimination of a water molecule. So, only one H2O molecule is needed for the reverse process.</span>