Answer:
1s22s22p3.
Explanation:
Electronic configuration of a neutral atom is 1s22s22p3.
Please see the image attached
Neutral atom of nitrogen will have equal number of proton and electron i.e equal to 7. 7 electron of the nitrogen are placed into the s and p orbitals in the ground state.
Answer:
Quantity of Carbon is 4.09 gm
Explanation:
Equation of carbon reacting with oxygen to give carbon dioxide is given by
C +
⇒ C
One mole of carbon reacts with one mole of Oxygen in this reaction to give One mole of Carbon dioxide.
So, 12 gm of carbon reacts with 32 gm of Oxygen in this reaction to give 44 gm of carbon dioxide.
15 gm of C
was formed in this reaction
Oxygen used in this reaction =
×32 = 10.91 gm ,
Thus Oxygen is in sufficient quantity in the reaction.
Now,
Carbon that must be used =
×12 = 4.09 gm.
The simple equation used to calculate work is force multiplied by distance, thus as this is the case increasing the distance by a certain amount, assuming the force applied to the object is constant, the amount of work you are doing on the box for instance pushing it, is going to be greater
Since you are pushing the box with the same force covering a greater distance with the force.
Then answer would be D. Answer D is correct because you would need to use a better solvent to see the ink separate on the chromatography paper. Hope that helps. :)
Answer:
0.4 M
Explanation:
Molarity is defined as moles of solute, which in your case is sodium hydroxide,
NaOH
, divided by liters of solution.
molarity
=
moles of solute
liters of solution
Notice that the problem provides you with the volume of the solution, but that the volume is expressed in milliliters,
mL
.
Moreover, you don't have the number of moles of sodium hydroxide, you just have the mass in grams. So, your strategy here will be to
determine how many moles of sodium hydroxide you have in that many grams
convert the volume of the solution from milliliters to liters
So, to get the number of moles of solute, use sodium hydroxide's molar mass, which tells you what the mass of one mole of sodium hydroxide is.
7
g
⋅
1 mole NaOH
40.0
g
=
0.175 moles NaOH
The volume of the solution in liters will be
500
mL
⋅
1 L
1000
mL
=
0.5 L
Therefore, the molarity of the solution will be
c
=
n
V
c
=
0.175 moles
0.5 L
=
0.35 M
Rounded to one sig fig, the answer will be
c
=
0.4 M
Explanation: