I think it’s green but idk
Angular momentum is conserved, just before the clay hits and just after;
<span>mv(L/2) = Iw </span>
<span>I is the combined moment of inertia of the rod, (1/12)ML^2 , and the clay at the tip, m(L/2)^2 ; </span>
<span>I = [(1/12)ML^2 + m(L/2)^2] </span>
<span>Immediately after the collision the kinetic energy of rod + clay swings the rod up so the clay rises to a height "h" above its lowest point, giving it potential energy, mgh. From energy conservation in this phase of the problem; </span>
<span>(1/2)Iw^2 = mgh </span>
<span>Use the "w" found in the conservation of momentum above; and solve for "h" </span>
<span>h = mv^2L^2/8gI </span>
<span>Next, get the angle by noting it is related to "h" as; </span>
<span>h = (L/2) - (L/2)Cos() </span>
<span>So finally </span>
<span>Cos() = 1- 2h/L = 1 - mv^2L/4gI </span>
<span>m=mass of clay </span>
<span>M=mass of rod </span>
<span>L=length of rod </span>
<span>v=velocity of clay</span>
Answer:
a)
, b)
, c) 
Explanation:
A turbine is a device which works usually in steady state and assumption of being adiabatic means no heat interactions between steam through turbine and surroudings and produce mechanical work from fluid energy. Changes in gravitational energy can be neglected. This system can be modelled after the First Law of Thermodynamics:

a) Change in kinetic energy

![\Delta \dot K = \frac{1}{2} \cdot \left(12.6\,\frac{kg}{s} \right) \cdot \left[\left(80\,\frac{m}{s} \right)^{2}-\left(50\,\frac{m}{s} \right)^{2}\right]](https://tex.z-dn.net/?f=%5CDelta%20%5Cdot%20K%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20%5Cleft%2812.6%5C%2C%5Cfrac%7Bkg%7D%7Bs%7D%20%5Cright%29%20%5Ccdot%20%5Cleft%5B%5Cleft%2880%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D-%5Cleft%2850%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%5Cright%5D)


b) Power output



c) Turbine inlet area
Turbine inlet area can be found by using the following expressions:






(a) Force between the two charges
The electrostatic force between the two charges is given by:

where k is the Coulomb's constant, q1 and q2 the two charges, r their separation.
In this problem:



Substituting into the equation, we find

(b) direction of particle q2
Particle q2 wants to move in the direction of the force acting on it. The direction of the force depends on the relative sign of the two charges: like charges attract each other, opposite charges repel each other. In this case, the two charges are both positive, so they repel each other and q2 tends to move away from particle q1.
Answer:
(A) 9.5 m/s
(B) 5.225 m
Explanation:
vertical height (h) = 4.7 m
horizontal distance (d) = 9.3 m
acceleration due to gravity (g) = 9.8 m/s^{2}
initial speed of the fish (u) = 0 m/s
(A) what is the pelicans initial speed ?
- lets first calculate the time it took the fish to fall
s = ut + 
since u = 0
s = 
t =
where a = acceleration due to gravity and s = vertical height
t =
= 0.98 s
- pelicans initial speed = speed of the fish
speed of the fish = distance / time = 9.3 / 0.98 = 9.5 m/s
initial speed of the pelican = 9.5 m/s
(B) If the pelican was traveling at the same speed but was only 1.5 m above the water, how far would the fish travel horizontally before hitting the water below?
vertical height = 1.5 m
pelican's speed = 9.5 m/s
- lets also calculate the time it will take the fish to fall
s = ut + 
since u = 0
s = 
t =
where a = acceleration due to gravity and s = vertical height
t =
= 0.55 s
distance traveled by the fish = speed x time = 9.5 x 0.55 = 5.225 m