When precipitation hits the ground and hydrosphere
Answer:
(a) 1.16 s
(b)0.861 Hz
Explanation:
(a) Period : The period of a simple harmonic motion is the time in seconds, required for a object undergoing oscillation to complete one cycle.
From the question,
If 1550 cycles is completed in (30×60) seconds,
1 cycle is completed in x seconds
x = 30×60/1550
x = 1.16 s
Hence the period is 1.16 seconds.
(b) Frequency : This can be defined as the number of cycles that is completed in one seconds, by an oscillating body. The S.I unit of frequency is Hertz (Hz).
Mathematically, Frequency is given as
F = 1/T ........................... Equation 1
Where F = frequency, T = period.
Given: T = 1.16 s.
Substitute into equation 1
F = 1/1.16
F = 0.862 Hz
Hence thee frequency = 0.862 Hz
You'd get an extra 40/60 of the energy, or 2/3. Multiply 5/3 by the required energy to get the actual consumption.
That's the period of time known as one solar "day". We subdivide it into 24 slices which we call "hours". Using this system of time units, the day is about 4 minutes longer than one complete axial rotation of the Earth.
Answer:
The ballon will brust at
<em>Pmax = 518 Torr ≈ 0.687 Atm </em>
<em />
<em />
Explanation:
Hello!
To solve this problem we are going to use the ideal gass law
PV = nRT
Where n (number of moles) and R are constants (in the present case)
Therefore, we can relate to thermodynamic states with their respective pressure, volume and temperature.
--- (*)
Our initial state is:
P1 = 754 torr
V1 = 3.1 L
T1 = 294 K
If we consider the final state at which the ballon will explode, then:
P2 = Pmax
V2 = Vmax
T2 = 273 K
We also know that the maximum surface area is: 1257 cm^2
If we consider a spherical ballon, we can obtain the maximum radius:

Rmax = 10.001 cm
Therefore, the max volume will be:

Vmax = 4 190.05 cm^3 = 4.19 L
Now, from (*)

Therefore:
Pmax= P1 * (0.687)
That is:
Pmax = 518 Torr