The expression of the electric flux is

Here,
Q = Total charge enclosed in the closed surface
= Permittivity due to free space
Rearranging to find the charge,

Replacing with our values we have finally



The charge enclosed by the box is 0.1684nC
The sign of the charge can be decided by using the direction of the flux. The charge enclosed by the cube can be calculated by using the electric flux and the permitivity of free space.
Answer:
0.767m
Explanation:
We are given that the time interval between each droplet is equal.
We are also given that the fourth drop is just dripping from the shower when the first hits the floor.
If they fall at the same time interval and we know that the distance between the shower head and floor are the same, they must therefore fall at the same velocity.
The distance between each drop has to be the same given that they fall at equal time intervals.
Let this distance be x.
We can then partition the entire height of the system into three parts (as shown in the diagram).
Hence, we can say that:
x + x + x = 2.3m
3x = 2.3m
=> x = 2.3/3 = 0.767m
Therefore, at the time the first drop hits the floor, the third drop is only 0.767 m below the shower head.
Answer:
Distance
Explanation:
distance is in vertical axis,or y-axis and time is on the horizontal axis,or x-axis.
Answer:
2.5 m/s²
Explanation:
Given,
Initial speed ( u ) = 10 m/s
Final speed ( v ) = 20 m/s
Time ( t ) = 4 seconds
To find : Acceleration ( a ) = ?
Formula : -
a = ( v - u ) / t
a = ( 20 - 10 ) / 4
= 10 / 4
= 5 / 2
a = 2.5 m/s²
Therefore,
The acceleration of the scooter is 2.5 m/s²
Answer:
μ = 0.37
Explanation:
For this exercise we must use the translational and rotational equilibrium equations.
We set our reference system at the highest point of the ladder where it touches the vertical wall. We assume that counterclockwise rotation is positive
let's write the rotational equilibrium
W₁ x/2 + W₂ x₂ - fr y = 0
where W₁ is the weight of the mass ladder m₁ = 30kg, W₂ is the weight of the man 700 N, let's use trigonometry to find the distances
cos 60 = x / L
where L is the length of the ladder
x = L cos 60
sin 60 = y / L
y = L sin60
the horizontal distance of man is
cos 60 = x2 / 7.0
x2 = 7 cos 60
we substitute
m₁ g L cos 60/2 + W₂ 7 cos 60 - fr L sin60 = 0
fr = (m1 g L cos 60/2 + W2 7 cos 60) / L sin 60
let's calculate
fr = (30 9.8 10 cos 60 2 + 700 7 cos 60) / (10 sin 60)
fr = (735 + 2450) / 8.66
fr = 367.78 N
the friction force has the expression
fr = μ N
write the translational equilibrium equation
N - W₁ -W₂ = 0
N = m₁ g + W₂
N = 30 9.8 + 700
N = 994 N
we clear the friction force from the eucacion
μ = fr / N
μ = 367.78 / 994
μ = 0.37