That's called "refraction".
Answer:
60.2 J
Explanation:
Efficiency is the ratio of work out to work in.
e = Wout / Win
0.86 = Wout / 70 J
Wout = 60.2 J
Answer:
Once a carnivorous plant has procured an item for dinner, it has to have some way to turn it into fertilizer. What carnivorous plants do is very similar to what humans do with their dinner after they have eaten it. Most carnivorous plants have glands that secrete acids and enzymes to dissolve proteins and other compounds. The plants may also enlist other organisms to help with digestion. The plants then absorb the nutrients made available from the prey.
Drosera releases digestive juices through the glands at the tip of its tentacles and absorbs the nutrients through the tentacles, leaf surface, and sessile glands. In order to do this it bends its tentacles and rolls or bends the leaf to get as many tentacles as possible into contact with the prey for digestion and to make as much leaf surface available for absorption. Its relative Drosophyllum has differently structured, non moving tentacles and doesn't use them directly for digestion. Instead it has specialized glands on the surface of the leaf that release the digestive enzymes (see Carniv. Pl. Newslett. 11(3):66-73 ( PDF ) for drawings and discussion).
The sealed trap of Dionaea does digestion in a way similar to the leaf surface digestion carnivores—upon capture of a prey, digestive enzymes in mucous are released. The advantage of the sealed trap of Dionaea is rain won't wash away the nutrients as digestion proceeds.
The sealed trap carnivores Aldrovanda and Utricularia already have water in their traps so they only need to release enzymes. Utricularia appears to release the enzymes continuously into its traps.
The other carnivorous plants use either a mixed mode of digestive enzymes and partner organisms (Genlisea, Sarracenia, most Nepenthes, Cephalotus, some Heliamphora, Roridula) or other organisms exclusively for digestion (most Heliamphora, some Nepenthes, Darlingtonia). Part of the reason for partnering with other organisms is that the plants actually have little choice in the matter. This could also be a factor for the leaf surface and sealed trap digesters as well. The prey will have gut flora that are quite capable of digesting their host when it dies. In addition, insect larvae, frog tadpoles, and predacious protozoans will or will attempt to take up residence in water-filled traps. The plant releasing digestive enzymes and acids into the traps will help tip the nutrition balance to themselves, but there are limits.
Explanation:
Yes, scientific method can be applied on many everyday activities to get a reasonable solution. Infact normally we are applying this method without having it in our knowledge that we are applying it.
For example: In morning we are going to office and we start the car, but it is not started.You turn the engine again and again but it simply donot works.
Observation (the state of defining a problem):
The car is not started
Hypothesis (A possible solution based on the information we already know):
The car is not started because it might be out of gas or there can be some other technical fault.
Experiment (testing of hypothesis by applying different methods of solving problem):
You get the fuel and put it inside the car but it still donot works and car didnot start. Experiment didnot get solution.
Analyze the results of data and test another hypothesis
You call a technician and he check with the car engine tries and finds out that the engine was out of order and needs repairing.
Draw conclusion:
The engine do not works when it is out of order and it is a cause of a car not being started.
<em>Now the theory and law making part can not be applied on this case but it is a part of scientific method.</em>
Hope it helps!
According to Hooke's law, Force = spring constant x displacement of the spring. Spring constant = Force/displacement in spring = 45/0.14 = 321.42 N/m. Hope this helps!