Answer:
21
Explanation: its actually 20.85 but i guess they round to 21
Answer:
serie Ceq=0.678 10⁻⁶ F and the charge Q = 9.49 10⁻⁶ C
Explanation:
Let's calculate all capacity values
a) The equivalent capacitance of series capacitors
1 / Ceq = 1 / C1 + 1 / C2 + 1 / C3 + 1 / C4 + 1 / C5
1 / Ceq = 1 / 1.5 + 1 / 3.3 + 1 / 5.5 + 1 / 6.2 + 1 / 6.2
1 / Ceq = 1 / 1.5 + 1 / 3.3 + 1 / 5.5 + 2 / 6.2
1 / Ceq = 0.666 + 0.3030 +0.1818 +0.3225
1 / Ceq = 1,147
Ceq = 0.678 10⁻⁶ F
b) Let's calculate the total system load
Dv = Q / Ceq
Q = DV Ceq
Q = 14 0.678 10⁻⁶
Q = 9.49 10⁻⁶ C
In a series system the load is constant in all capacitors, therefore, the load in capacitor 5.5 is Q = 9.49 10⁻⁶ C
c) The potential difference
ΔV = Q / C5
ΔV = 9.49 10⁻⁶ / 5.5 10⁻⁶
ΔV = 1,725 V
d) The energy stores is
U = ½ C V²
U = ½ 0.678 10-6 14²
U = 66.4 10⁻⁶ J
e) Parallel system
Ceq = C1 + C2 + C3 + C4 + C5
Ceq = (1.5 +3.3 +5.5 +6.2 +6.2) 10⁻⁶
Ceq = 22.7 10⁻⁶ F
f) In the parallel system the voltage is maintained
Q5 = C5 V
Q5 = 5.5 10⁻⁶ 14
Q5 = 77 10⁻⁶ C
g) The voltage is constant V5 = 14 V
h) Energy stores
U = ½ C V²
U = ½ 22.7 10-6 14²
U = 2.2 10⁻³ J
Complete question:
What is the peak emf generated by a 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17 ms, originally having its plane perpendicular to a uniform magnetic field 0.425 T. (This is 60 rev/s.)
Answer:
The peak emf generated by the coil is 15.721 kV
Explanation:
Given;
Radius of coil, r = 0.250 m
Number of turns, N = 500-turn
time of revolution, t = 4.17 ms = 4.17 x 10⁻³ s
magnetic field strength, B = 0.425 T
Induced peak emf = NABω
where;
A is the area of the coil
A = πr²
ω is angular velocity
ω = π/2t = (π) /(2 x 4.17 x 10⁻³) = 376.738 rad/s = 60 rev/s
Induced peak emf = NABω
= 500 x (π x 0.25²) x 0.425 x 376.738
= 15721.16 V
= 15.721 kV
Therefore, the peak emf generated by the coil is 15.721 kV