(a) Force between the two charges
The electrostatic force between the two charges is given by:

where k is the Coulomb's constant, q1 and q2 the two charges, r their separation.
In this problem:



Substituting into the equation, we find

(b) direction of particle q2
Particle q2 wants to move in the direction of the force acting on it. The direction of the force depends on the relative sign of the two charges: like charges attract each other, opposite charges repel each other. In this case, the two charges are both positive, so they repel each other and q2 tends to move away from particle q1.
Answer:
461.88 N
Explanation:
= Weight of the swing = 800 N
= Tension force in the rope
= Horizontal force being applied by the partner
Using equilibrium of force in vertical direction using the force diagram, we get

Using equilibrium of force in horizontal direction using the force diagram, we get

Answer:
option D is correct
Explanation:
cl has 17 electrons if it has 18 it becomes cl-
Answer:
A. attracted to the negative terminal of the voltage source.
Explanation:
When an electron is displaced in a semiconductor, the hole that's left behind is
A. attracted to the negative terminal of the voltage source.
The electron leaving leaves a net + charge, which is attracted to the negative terminal.
A = 1.15m/s2, Vf = 80.0km/h --> we need it in m/s, so:
Vf = 80km/h × 1000m/1km × 1h/3600s
= 22.22m/s
Top speed = Vf, initial speed = Vi
time (t) = V(Vf-Vi) ÷ a
t = (22.22-0)m/s ÷ 1.15m/s2
t = 22.22m/s × s2/1.15m
= 19.32 seconds