Answer:
1. 
2. 
Explanation:
1.
Given:
- height of the window pane,

- width of the window pane,

- thickness of the pane,

- thermal conductivity of the glass pane,

- temperature of the inner surface,

- temperature of the outer surface,

<u>According to the Fourier's law the rate of heat transfer is given as:</u>

here:
A = area through which the heat transfer occurs = 
dT = temperature difference across the thickness of the surface = 
dx = t = thickness normal to the surface = 


2.
- air spacing between two glass panes,

- area of each glass pane,

- thermal conductivity of air,

- temperature difference between the surfaces,

<u>Assuming layered transfer of heat through the air and the air between the glasses is always still:</u>



the required documents is 3000
Answer:
a) 84.034°C
b) 92.56°C
c) ≈ 88 watts
Explanation:
Thickness of aluminum alloy fin = 12 mm
width = 10 mm
length = 50 mm
Ambient air temperature = 22°C
Temperature of aluminum alloy is maintained at 120°C
<u>a) Determine temperature at end of fin</u>
m = √ hp/Ka
= √( 140*2 ) / ( 12 * 10^-3 * 55 )
= √ 280 / 0.66 = 20.60
Attached below is the remaining answers
Answer:
(C) ln [Bi]
Explanation:
Radioactive materials will usually decay based on their specific half lives. In radioactivity, the plot of the natural logarithm of the original radioactive material against time will give a straight-line curve. This is mostly used to estimate the decay constant that is equivalent to the negative of the slope. Thus, the answer is option C.
Answer:
No, they need to be somewhat flexible so that forces such as turbulance don't shear the wing off.