The concentration of A will be <em>0.34 mol·L⁻¹</em> after 60 min.
In a first-order reaction, the formula for the amount remaining after <em>n</em> half-lives is
![\text{[A]} = \frac{\text{[A]}_{0}}{2^{n}}\\](https://tex.z-dn.net/?f=%5Ctext%7B%5BA%5D%7D%20%3D%20%5Cfrac%7B%5Ctext%7B%5BA%5D%7D_%7B0%7D%7D%7B2%5E%7Bn%7D%7D%5C%5C)
If 
∴
<span>The
bent geometry of the water molecule gives a slight overall negative
charge to the oxygen side of the molecule and a slight overall positive
charge to the hydrogen side of the molecule. This slight separation of
charges gives the entire molecule an electrical polarity, so water
molecules are dipolar.</span>
The missing question is:
<em>What is the percent efficiency of the laser in converting electrical power to light?</em>
The percent efficiency of the laser that consumes 130.0 Watt of electrical power and produces a stream of 2.67 × 10¹⁹ 1017 nm photons per second, is 1.34%.
A particular laser consumes 130.0 Watt (P) of electrical power. The energy input (Ei) in 1 second (t) is:

The laser produced photons with a wavelength (λ) of 1017 nm. We can calculate the energy (E) of each photon using the Planck-Einstein's relation.

where,

The energy of 1 photon is 6.52 × 10⁻²⁰ J. The energy of 2.67 × 10¹⁹ photons (Energy output = Eo) is:

The percent efficiency of the laser is the ratio of the energy output to the energy input, times 100.

The percent efficiency of the laser that consumes 130.0 Watt of electrical power and produces a stream of 2.67 × 10¹⁹ 1017 nm photons per second, is 1.34%.
You can learn more about lasers here: brainly.com/question/4869798
Answer:
Yes.
Explanation:
Hydrogen-filled balloons were widely used by the militaries during World War I (1914–1918). The main purpose of these hydrogen-filled balloons to detect movements of enemy troops and to provide direction to the artillery fire. Balloons were the targets of opposing aircraft because they knew the purpose of these balloons so they hit it whenever seen by the enemies so we can say that both sides used hydrogen-filled balloons as military observer to watch the enemy's movements.
The main difference between gas pressure and vapour pressure is that gas pressure is exerted by the gases above the surface of a substance whereas vapour pressure is exerted by liquids above the surface of a substance