Some are out but will be on Netflix June 17
C. They don't have free electrons.
The only things capable of conducting a charge are things that have charged particles in them that are free to move, e.g free electrons, free positions, or dissociated ions
(I assume that the 4 directions north-south-east-west are meant with respect to the wire seen from the top.)
We can use the right-hand rule to understand the direction of the magnetic field generated by the wire. The thumb follows the direction of the current in the wire (upward), while the other fingers give the direction of the field in every point around the wire. Seen from the top, the field has an anti-clockwise direction. Therefore, if we take a point at east with respect to the wire, in this point the field has direction south.
The cart is at rest, so it is in equilibrium and there is no net force acting on it. The only forces acting on the cart are its weight (magnitude <em>w</em>), the normal force (mag. <em>n</em>), and the friction force (maximum mag. <em>f</em> ).
In the horizontal direction, we have
<em>n</em> cos(120º) + <em>f</em> cos(30º) = 0
-1/2 <em>n</em> + √3/2 <em>f</em> = 0
<em>n</em> = √3 <em>f</em>
and in the vertical,
<em>n</em> sin(120º) + <em>f</em> sin(30º) + (-<em>w</em>) = 0
<em>n</em> sin(120º) + <em>f</em> sin(30º) = (50 kg) (9.80 m/s²)
√3/2 <em>n</em> + 1/2 <em>f</em> = 490 N
Substitute <em>n</em> = √3 <em>f</em> and solve for <em>f</em> :
√3/2 (√3 <em>f </em>) + 1/2 <em>f</em> = 490 N
2 <em>f</em> = 490 N
<em>f</em> = 245 N
(pointed up the incline)