Answer:
The car manufacturers could increase bore of the cylinders, place the engine in the center or back of the car, add 1 to 2 turbochargers, and lower the center of gravity of the vehicle to increase traction.
Explanation:
Turbochargers would be recommended because they significantly increase both the torque of the engine as well as the amount of horses powering the car while also increasing original efficiency both with and without the additional power. Weight adjustment allows for lightweight vehicles with good traction. This is important to both keep control of the car under acceleration, but it also makes the vehicle more efficient due to the now sheddable unnecessary weight. A more obvious approach would be to increase the base horsepower and torque of the engine by increasing the bore of the cylinders and the weight of the pistons. This acts as an inertial lever, because the extra piston weight will drag the crankshaft faster. This could also be achieved by taking away piston weight, but this could be catastrophic should a piston slip.
Answer: search it on browser
Answer: Convection and conduction
Tell me that I got it right??
Explanation
Mark me as Brainliest PLEASE I HAVE 0 BRAINLIEST
Answer:
The BOD concentration 50 km downstream when the velocity of the river is 15 km/day is 63.5 mg/L
Explanation:
Let the initial concentration of the BOD = C₀
Concentration of BOD at any time or point = C
dC/dt = - KC
∫ dC/C = -k ∫ dt
Integrating the left hand side from C₀ to C and the right hand side from 0 to t
In (C/C₀) = -kt + b (b = constant of integration)
At t = 0, C = C₀
In 1 = 0 + b
b = 0
In (C/C₀) = - kt
(C/C₀) = e⁻ᵏᵗ
C = C₀ e⁻ᵏᵗ
C₀ = 75 mg/L
k = 0.05 /day
C = 75 e⁻⁰•⁰⁵ᵗ
So, we need the BOD concentration 50 km downstream when the velocity of the river is 15 km/day
We calculate how many days it takes the river to reach 50 km downstream
Velocity = (displacement/time)
15 = 50/t
t = 50/15 = 3.3333 days
So, we need the C that corresponds to t = 3.3333 days
C = 75 e⁻⁰•⁰⁵ᵗ
0.05 t = 0.05 × 3.333 = 0.167
C = 75 e⁻⁰•¹⁶⁷
C = 63.5 mg/L
Since g is constant, the force the escaping gas exerts on the rocket will be 10.4 N
<h3>
What is Escape Velocity ?</h3>
This is the minimum velocity required for an object to just escape the gravitational influence of an astronomical body.
Given that the velocity of a 0.25kg model rocket changes from 15m/s [up] to 40m/s [up] in 0.60s. The gravitational field intensity is 9.8N/kg.
To calculate the force the escaping gas exerts of the rocket, let first highlight all the given parameters
- Mass (m) of the rocket 0.25 Kg
- Initial velocity u = 15 m/s
- Final Velocity v = 40 m/s
- Gravitational field intensity g = 9.8N/kg
The force the gas exerts of the rocket = The force on the rocket
The rate change in momentum of the rocket = force applied
F = ma
F = m(v - u)/t
F = 0.25 x (40 - 15)/0.6
F = 0.25 x 41.667
F = 10.42 N
Since g is constant, the force the escaping gas exerts on the rocket is therefore 10.4 N approximately.
Learn more about Escape Velocity here: brainly.com/question/13726115
#SPJ1