Answer:
Explanation:
So, the formula for the compound should be:

Now we assume that we have 1 mol of substance, so we can make calculations to know the molar mass of element X, as follows:

So we have that 6 moles weight 212.7g, and we can make a rule of three to know the weight of compound X:

As we used 1 mol, we know that the molar mass is 32.06g/mol
So the element has a molar mass of 32.06 g/mol and an oxidation state of +6, with this information, we can assure that the element X is sulfur, so the compound is 
Nanochemicals can be defined as chemicals generated by using nanomaterials (materials that possess of size on nanometer dimensions). The nanochemicals are used in multiple different applications including chemical warfare, bicycle making, armor design and military weapons crafting. The most commonly used and observed nanochemicals are carbon nanotubes that are used a ton in industry for applications such as stronger materials (stronger bicycles).
Smart materials are exquisitely designed materials whose property(ies) can be modified with the use of an external stimulus such as temperature, stress, pH, and so on. Some examples of smart materials include shape memory materials, piezoelectric materials, ferrofluids, self-healing materials, and such. Applications involve memory pillows, memory based solar panels (for satellites), light sensitive glasses, and so on.
Specialized materials are made specifically to perform a specified task or function. Applications involve electronic equipment (high purity silicon & germanium), machine tools (high tungsten high carbon steel), dental filling (dental amalgam), and so on.
Answer:
n = 7.86 mol
Explanation:
This question can be solved using the ideal gas law of PV = nRT.
Temperature must be in K, so we will convert 22.5C to 295 K ( Kelvin = C + 273).
R is the ideal gas constant of 0.0821.
(2.24atm)(85.0L) = n(0.0821)(295K)
Isolate n to get:
n = (2.24atm)(85.0L)/(0.0821)(295K)
n = 7.86 mol
Answer: 631.8 g
Explanation:

It can be seen from the balanced chemical equation, 2 moles of ethane reacts with 7 moles of Oxygen gas to produce 4 moles of carbon dioxide and 6 moles of water.
Ethane is the limiting reagent as it limits the formation of product.
Thus, if 2 moles of ethane produce 6 moles of water.
11.7 moles moles of ethane produce=
of water.
Mass of water= no of moles
Molar mass
Mass of water= 35.1
18g/mol= 631.8 g
About 8.0 moles of methane.Number of moles = MassMolar mass.
And thus we get the quotient:
128.3⋅g16.04⋅g⋅mol−1=8.0⋅moles of methane.
Note that the expression is dimensionally consistent, we wanted an answer in moles, and the quotients gives, 1mol−1=11mol=mol as required.