Answer:
= 1.9792 × 10^10
Significant Figures= 5
Explanation:
Look at the attachment below
Hope this helps (:
Since this is a distance/time graph, the speed at any time is the slope
of the part of the graph that's directly over that time on the x-axis.
At time t1 = 2.0 s
That's in the middle of the first segment of the graph,
that extends from zero to 3 seconds.
Its slope is 7/3 . v1 = 7/3 m/s .
At time t2 = 4.0 s
That's in the middle of the horizontal part of the graph
that runs from 3 to 6 seconds.
Its slope is zero.
v2 = zero .
At time t3 = 13 s.
That's in the middle of the part of the graph that's sloping down,
between 11 and 16 seconds.
Its slope is -3/5 . v3 = -0.6 m/s .
Answer:
C
Explanation:
(c) The two cuts that are being roasted for each time-temperature combination are an example of replication.
In the question it is given that From 10 identical cuts of lamb, 2 are randomly selected to roast using each of the time-temperature combinations in the same oven. Here it is an act of copying the exact sahpe size of the lamb in all cuts, which is nothing but replication. Moreover, this replication can help in proper comparision.
Answer:
We conclude that the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Explanation:
Given
To determine
Kinetic Energy (K.E) = ?
We know that a body can possess energy due to its movement — Kinetic Energy.
Kinetic Energy (K.E) can be determined using the formula

where
- K.E is the Kinetic Energy (J)
now substituting m = 1.75, and v = 54 in the formula



J
Therefore, the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Answer:
The pressure is 6570 lbf/ft²
The temperature is 766 ⁰R
The velocity is 2746.7 ft/s
deflection angle behind the wave is 17.56⁰
Explanation:
Speed of air at initial condition:

γ is the ratio of specific heat, R is the universal gas constant, and T is the initial temperature.
initial mach number

then, 
based on the values obtained, read off the following from table;
P₂/P₁ = 3.285
T₂/T₁ = 1.473
Mₙ₂ = 0.6355
Thus;
P₂ = 3.285P₁ = 3.285(2000) = 6570 lbf/ft²
T₂ = 1.473T₁ = 1.473(520⁰R) = 766 ⁰R
Again; to determine the velocity and deflection angle, first we calculate the mach number.




