Answer:
hydrate
Explanation:
when a hydrate is heated,it changes color due to the exothermic reaction taking place.the structure of the complex changes but not entirely.this result in the sample to to not dissolve completely and we can observe the small traces of the sample.
Answer:
C11H25SO4
Explanation:
The total mass of the compound is 253.4 g, so, the mass of each element will be:
C: 52.14% of 253.4 = 0.5214x253.4 = 132.12 g
H: 9.946% of 253.4 = 0.09946x253.4 = 25.20 g
S: 12.66% of 253.4 = 0.1266x253.4 = 32.08 g
O: 25.26% of 253.4 = 0.2526x253.4 = 64.00 g
The molar mass are: C = 12 g/mol, H 1 g/mol, S = 32 g/mol, and O = 16 g/mol
So, to know how much moles will be, just divide the mass calculated above for the molar mass:
C: 132.12/12 = 11 moles
H: 25.20/ 1 = 25 moles
S: 32.08/32 = 1 mol
O: 64.00/16 = 4 moles
So the molecular formula is C11H25SO4
As you can see in the picture we have +ΔH so that means for this reaction we need to GET heat. so the answer is A. endothermic :))
i hope this is helpful
have a nice day
Answer:
54.7°C is the new temperature
Explanation:
We combine the Ideal Gases Law equation to solve this.
P . V = n. R. T
As moles the balloon does not change and R is a constant, we can think this relation between the two situations:
P₁ . V₁ / T₁ = P₂ . V₂ / T₂
T° is absolute temperature (T°C + 273)
68.7°C + 273 = 341.7K
(0.987 atm . 564L) / 341.7K = (0.852 atm . 625L) / T₂
1.63 atm.L/K = 532.5 atm.L / T₂
T₂ = 532.5 atm.L / 1.63 K/atm.L → 326.7K
T° in C = T°K - 273 → 326.7K + 273 = 54.7°C