The deceleration of the rocket sled if it comes to rest in 1.1 s from a speed of 1000 km/h is
.
The acceleration in opposite direction is known as the deceleration. Basically the deceleration is negative value of the acceleration since the negative sign depicts its opposite in direction.
The given data:
time, t = 1.1 s
initial speed, u = 1000 km/h = 
final speed, v = 0 m/s
So we will be using the equation of motion, that is,
v = u + at



Hence , the deceleration of the rocket is
.
To learn more about Attention here:
brainly.com/question/28500124
#SPJ4
If we are to place dots to teh places that have been struck by an earthquake these past 100 years, the dots would be concentrated in the east and southeast Asia region. This is because of the presence of the Pacific ring of fire. This is a major area in the Pacific Ocean where most of the earthquakes are likely to occur.
Answer:
The ball would hit the floor approximately
after leaving the table.
The ball would travel approximately
horizontally after leaving the table.
(Assumption:
.)
Explanation:
Let
denote the change to the height of the ball. Let
denote the time (in seconds) it took for the ball to hit the floor after leaving the table. Let
denote the initial vertical velocity of this ball.
If the air resistance on this ball is indeed negligible:
.
The ball was initially travelling horizontally. In other words, before leaving the table, the vertical velocity of the ball was
.
The height of the table was
. Therefore, after hitting the floor, the ball would be
below where it was before leaving the table. Hence,
.
The equation becomes:
.
Solve for
:
.
In other words, it would take approximately
for the ball to hit the floor after leaving the table.
Since the air resistance on the ball is negligible, the horizontal velocity of this ball would be constant (at
) until the ball hits the floor.
The ball was in the air for approximately
and would have travelled approximately
horizontally during the flight.
<h2>K.E/P.E = m/k tan²φ x ω²</h2>
Explanation:
The given position of block x = x₀ cos(ωt + φ)
The velocity of block v = dx/dt = - x₀ sin(ωt + φ) x ω
The kinetic energy = 1/2 mv² = 1/2 m x₀² sin²(ωt + φ) x ω²
The potential energy of spring = 1/2 k x² , where k is the spring constant
Thus P.E = 1/2 x k x x₀² cos²(ωt + φ)
When t = 0
K.E = 1/2 m x₀²sin²φ x ω²
P.E = 1/2 k x₀² cos²φ
Dividing these , we have
K.E/P.E = m/k tan²φ x ω²
An atom that no longer has a neutral charge is called an ion