Answer:
16.4287
Explanation:
The force and displacement are related by Hooke's law:
F = kΔx
The period of oscillation of a spring/mass system is:
T = 2π√(m/k)
First, find the value of k:
F = kΔx
78 N = k (98 m)
k = 0.796 N/m
Next, find the mass of the unknown weight.
F = kΔx
m (9.8 m/s²) = (0.796 N/m) (67 m)
m = 5.44 kg
Finally, find the period.
T = 2π√(m/k)
T = 2π√(5.44 kg / 0.796 N/m)
T = 16.4287 s
Answer:
1.549 m
Explanation:
Given:
The radius of the circular board, r = 2 m
The probability of hitting the red is given as 0.6
Now, this probability of hitting the red can be conclude as
0.6 = (Area of red)/ (Total area of the board)
Total area of the board = πr² = π × 2²
let the radius of the red area be R
thus, area of red circle, = πR²
on substituting the value of the area, we have
0.6 = (πR²)/ (π × 2²)
or
R² = 2.4
or
R = 1.549 m
Thus, the radius of the red circle is 1.549 m
Resultant is 5 m/s using the Pythagorean theorem<span />
Answer:
<em>B) 1.0 × 10^5 V</em>
Explanation:
<u>Electric Potential Due To Point Charges
</u>
The electric potential produced from a point charge Q at a distance r from the charge is

The total electric potential for a system of point charges is equal to the sum of their individual potentials. This is a scalar sum, so direction is not relevant.
We must compute the total electric potential in the center of the square. We need to know the distance from all the corners to the center. The diagonal of the square is

where a is the length of the side.
The distance from any corner to the center is half the diagonal, thus


The total potential is

Where V1 and V2 are produced by the +4\mu C charges and V3 and V4 are produced by the two opposite charges of
. Since all the distances are equal, and the charges producing V3 and V4 are opposite, V3 and V4 cancel each other. We only need to compute V1 or V2, since they are equal, but they won't cancel.


The total potential is


Answer:
"Why"
Explanation: A scientific law is a description of how the natural world behaves under certain circumstances.