Answer:
The time it takes the ball to stop is 0.021 s.
Explanation:
Given;
mass of the softball, m = 720 g = 0.72 kg
velocity of the ball, v = 15.0 m/s
applied force, F = 520 N
Apply Newton's second law of motion, to determine the time it takes the ball to stop;

Therefore, the time it takes the ball to stop is 0.021 s.
The speed of cart b is 6m/s while the total momentum of the systmen is 4200 kg m/s
<h3>Conservation of Linear Momentum</h3>
Given Data
- Mass of cart one M1 = 150kg
- Initial Velocity U1 = 8m/s
Mass of cart two M2 = 150kg
Velocity U2 = 6m/s
Applying the principle of conservation of linear momentum we have
M1U1+M2U2 = M1V1+ M2V2
a. what is the speed of cart b after collision
substituting our given data we have
150*8+ 150*6 = 150*5+150*V2
1200 + 900 = 1200+ 150V2
2100 - 1200 = 150V2
900 = 150V2
Divide both sides by 150
V2 = 900/150
V2 = 6m/s
b. what is the total momentum of the system before and after collision
Total Momentum in the system is
Total momentum = Momentum before Impact+ Momentum after Impact
Total momentum = M1U1+M2U2 + M1V1+ M2V2
Total momentum = 1200 + 900 + 1200+ 900
Total momentum = 4200 kg m/s
Learn more about Conservation of Linear Momentum here:
brainly.com/question/7538238
Answer:
No. 67
Peter Street
12th Road
Chennai
24th June 201_
Dear Amrish
I have come to know that since your school has closed for the Autumn Break you have plenty of free time at your disposal at the moment. I would like to tell you that even I am having holidays now.
It has been a long time since we have spent some time together. If you are free, I would welcome to have your company this weekend. Why don’t you come over to my house and spend a day or so with me?
I am anxiously waiting for your reply.
Yours affectionately
your name
Answer:
Standard deviation = 3
Explanation:
Given


Required
Determine the standard deviation
First, we need to determine the variance;

This gives:



Know that:

Where SD represents standard deviation
This gives

Take square root


A spring that obeys Hooke's law has a spring force constant of 272 N/m. This spring is then stretched by 28.6 cm