Sulfur reacts with oxygen to yield SO3 as shown in the equation below;
2S(g)+ 3O2(g) = 2SO3(g)
From part A 7.49 g of S were used.
The atomic mass of sulfur is 32.06 g/mol
Hence, the number of moles of sulfur used
7.49 / 32.06 = 0.2336 moles
The mole ratio of S : SO3 is 1:1
Thus the mass of SO3 will be ( 1 mol of SO3= 80.06 g)
0.2336 moles × 80.06 = 18.7 g
La fuerza de la gravedad depende de la masa (el peso) de cada objeto. La fuerza con que se atraen dos objetos es proporcional a su masa y disminuye rápidamente en el momento en que los separamos. De hecho, nosotros también atraemos objetos con ‘nuestra’ fuerza gravitatoria, pero pesamos tan poco que no podemos percibirlo. En cambio, el Sol es tan grande que es capaz de mantenernos girando a su alrededor a pesar de estar muy lejos. La Luna también ejerce su propia fuerza gravitatoria, pero, como es más pequeña y ligera que la Tierra, si nos pesásemos sobre su superficie veríamos que pesamos unas seis veces menos que en la Tierra.
Podríamos preguntarnos por qué la Luna no cae sobre la Tierra al igual que una manzana cae del árbol. La razón es que nuestro satélite nunca está quieto. Se mueve constantemente a nuestro alrededor. Sin la fuerza de atracción terrestre, se alejaría flotando en el espacio. Gracias a esta combinación de velocidad y distancia de nuestro planeta, la Luna siempre está en equilibrio, ni cae ni se aleja. Si se moviera más rápido, se alejaría, si se moviera con más lentitud, ¡caería!
Hemos dicho que la fuerza de la gravedad también depende de la distancia. Si nos alejásemos lo suficiente de la Tierra, escaparíamos a su fuerza de atracción. Y eso es lo que tratamos de hacer con las naves espaciales. Necesitamos superar la llamada ‘velocidad de escape’, que es aproximadamente 11,2 km/s (a esa velocidad, podríamos viajar de Londres a Nueva York ¡en tan solo 10 minutos!). Cuando un cohete alcanza esa velocidad, ya es libre para viajar por el sistema solar.
Dentro de una nave en órbita, no sentimos la fuerza de la gravedad terrestre. Los objetos no caen, sino que flotan, así que si saltas, no regresas al suelo. Es lo que les ocurre a los astronautas cuando están a bordo de una estación espacial que orbita alrededor de la Tierra.
The mass of NaCl needed for the reaction is 91.61 g
We'll begin by calculating the number of mole of F₂ that reacted.
- Gas constant (R) = 0.0821 atm.L/Kmol
PV = nRT
1.5 × 12 = n × 0.0821 × 280
18 = n × 22.988
Divide both side by 22.988
n = 18 / 22.988
n = 0.783 mole
Next, we shall determine the mole of NaCl needed for the reaction.
F₂ + 2NaCl —> Cl₂ + 2NaF
From the balanced equation above,
1 mole of F₂ reacted with 2 moles of NaCl.
Therefore,
0.783 mole F₂ will react with = 0.783 × 2 = 1.566 moles of NaCl.
Finally, we shall determine the mass of 1.566 moles of NaCl.
- Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass = mole × molar mass
Mass of NaCl = 1.566 × 58.5
Mass of NaCl = 91.61 g
Therefore, the mass of NaCl needed for the reaction is 91.61 g
Learn more about stiochoimetry: brainly.com/question/25830314
Answer:
35Cl = 75.9 %
37Cl = 24.1 %
Explanation:
Step 1: Data given
The relative atomic mass of Chlorine = 35.45 amu
Mass of the isotopes:
35Cl = 34.96885269 amu
37Cl = 36.96590258 amu
Step 2: Calculate percentage abundance
35.45 = x*34.96885269 + y*36.96590258
x+y = 1 x = 1-y
35.45 = (1-y)*34.96885269 + y*36.96590258
35.45 = 34.96885269 - 34.96885269y +36.96590258y
0.48114731 = 1,99704989y
y = 0.241 = 24.1 %
35Cl = 34.96885269 amu = 75.9 %
37Cl = 36.96590258 amu = 24.1 %