Answer:
gravity.
Explanation:
it's almost impossible to make a sharp turn. if there is a sharp turn, the laws of gravity causes the passengers to lean 2 one side..
Answer:
The distance away the center of the earthquake is 1083.24 km.
Explanation:
Given that,
Speed of transverse wave = 9.1\ km/s
Speed of longitudinal wave = 5.7 km/s
Time = 71 sec
We need to calculate the distance of transverse wave
Using formula of distance

....(I)
The distance of longitudinal wave
....(II)
From the first equation

Put the value of t in equation (II)




Hence, The distance away the center of the earthquake is 1083.24 km.
<span>The 2nd truck was overloaded with a load of 16833 kg instead of the permissible load of 8000 kg.
The key here is the conservation of momentum.
For the first truck, the momentum is
0(5100 + 4300)
The second truck has a starting momentum of
60(5100 + x)
And finally, after the collision, the momentum of the whole system is
42(5100 + 4300 + 5100 + x)
So let's set the equations for before and after the collision equal to each other.
0(5100 + 4300) + 60(5100 + x) = 42(5100 + 4300 + 5100 + x)
And solve for x, first by adding the constant terms
0(5100 + 4300) + 60(5100 + x) = 42(14500 + x)
Getting rid of the zero term
60(5100 + x) = 42(14500 + x)
Distribute the 60 and the 42.
60*5100 + 60x = 42*14500 + 42x
306000 + 60x = 609000 + 42x
Subtract 42x from both sides
306000 + 18x = 609000
Subtract 306000 from both sides
18x = 303000
And divide both sides by 18
x = 16833.33
So we have the 2nd truck with a load of 16833.33 kg, which is well over it's maximum permissible load of 8000 kg. Let's verify the results by plugging that mass into the before and after collision momentums.
60(5100 + 16833.33) = 60(21933.33) = 1316000
42(5100 + 4300 + 5100 + 16833.33) = 42(31333.33) = 1316000
They match. The 2nd truck was definitely over loaded.</span>
Answer:
The magnitude of the tension in the cable, T is 1,064.315 N
Explanation:
Here we have
Length of beam = 4.0 m
Weight = 200 N
Center of mass of uniform beam = mid-span = 2.0 m
Point of attachment of cable = Beam end = 4.0 m
Angle of cable = 53° with the horizontal
Tension in cable = T
Point at which person stands = 1.50 m from wall
Weight of person = 350 N
Therefore,
Taking moment about the wall, we have
∑Clockwise moments = ∑Anticlockwise moments
T×sin(53) = 350×1.5 + 200×2
T = 850/sin(53) = 1,064.315 N.