Explanation:
Igneous - metamorphic - sedimentary
A rock cycle provides the cyclic transformation of one rock type to another in nature.
There are three main types of rock involved in the rock cycle;
- igneous rocks are derived from the cooling and solidification of molten magma
- metamorphic rocks are changed rocks subjected to intense pressure and temperature
- sedimentary rocks are derived from rock sediments that have been lithified.
The history of the rock in Monticello begins with igneous rock formation. Basalt is an igneous rock that forms from the cooling and solidification of molten magma. Under intense pressure and temperature regimes, they are changed to metamorphic rocks.
Agents of denudation such as wind, water and glacier weathers the rock and disintegrates it. They are then carried into basins where they are deposited. Here they form sedimentary rock.
The process still goes on as the sedimentary rock gets taken into depth, they can either melt to form igneous rock or be changed to metamorphic rocks.
learn more:
metamorphic process brainly.com/question/869769
sedimentary rocks brainly.com/question/9131992
#learnwithBrainly
The unconscious mind plays a large role in Sigmund Freud's psychoanalysis<span>. He discussed the importance of the unconscious mind in understanding conscious thought and behaviour. </span><span>Sigmund Freud
</span>
Explanation:
It is given that,
Velocity of the particle moving in straight line is :

We need to find the distance (x) traveled by the particle during the first t seconds. It is given by :


Using by parts integration, we get the value of x as :

Hence, this is the required solution.
Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m
the puck recoils in each case.
larger mass stone gives puck greater recoil, smaller stone, smaller recoil