Answer:
0.006075Joules
Explanation:
The final kinetic energy of the system is expressed as;
KE = 1/2(m1+m2)v²
m1 and m2 are the masses of the two bodies
v is the final velocity of the bodies after collision
get the final velocity using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
0.12(0.45) + 0/12(0) = (0.12+0.12)v
0.054 = 0.24v
v = 0.054/0.24
v = 0.225m/s
Get the final kinetic energy;
KE = 1/2(m1+m2)v
KE = 1/2(0.12+0.12)(0.225)²
KE = 1/2(0.24)(0.050625)
KE = 0.12*0.050625
KE = 0.006075Joules
Hence the final kinetic energy of the system is 0.006075Joules
Answer:
4000J
Explanation:
Given parameters:
Weight of the man = 800N
Height of ladder = 5m
Unknown:
Gravitational potential energy gained = ?
Solution:
The gravitational potential energy is due to the position of a body.
Gravitational potential energy = weight x height
Now insert the parameters;
Gravitational potential energy = 800 x 5 = 4000J
Answer:
1.73 m/s²
3.0 cm
Explanation:
Draw a free body diagram of the yo-yo. There are two forces: weight force mg pulling down, and tension force T pulling up 10° from the vertical.
Sum of forces in the y direction:
∑F = ma
T cos 10° − mg = 0
T cos 10° = mg
T = mg / cos 10°
Sum of forces in the x direction:
∑F = ma
T sin 10° = ma
mg tan 10° = ma
g tan 10° = a
a = 1.73 m/s²
Draw a free body diagram of the sphere. There are two forces: weight force mg pulling down, and air resistance D pushing up. At terminal velocity, the acceleration is 0.
Sum of forces in the y direction:
∑F = ma
D − mg = 0
D = mg
½ ρₐ v² C A = ρᵢ V g
½ ρₐ v² C (πr²) = ρᵢ (4/3 πr³) g
3 ρₐ v² C = 8 ρᵢ r g
r = 3 ρₐ v² C / (8 ρᵢ g)
r = 3 (1.3 kg/m³) (100 m/s)² (0.47) / (8 (7874 kg/m³) (9.8 m/s²))
r = 0.030 m
r = 3.0 cm
Answer:
When the object is placed at the focus the image is formed at infinity.
Explanation:
When a ray passes through focus and incident on a concave mirror then it will travel parallel to principal axis after reflection.Hence the image is formed at infinity.
Transmission of information in ANY form can be done digitally
or analoguely.
Beginning about 30 years ago, everything slowly started changing
to digital. Today, all commercial satellite communication, all optical
fiber communication, all internet communication, all computer
communication, all commercial cable communication, all commercial
television, and much of the telephone system, are all digital.
On your computer ... .pdf, .jpg, .mp3 etc. are all digital methods of
moving and storing information.
AM and FM radio are an interesting subject. They're all still analog.
They could easily be changed to all digital, and it would be a big
improvement, both for the broadcasters and for the listeners.
BUT ... every AM and FM radio that anybody has now would be
obsolete. Every single radio would either need to be replaced,
OR you'd need to add a digital decoder to every radio, like we
had to do with our TV sets a few years ago when television
suddenly became all digital. With AM and FM radios, the decoders
would be bigger, and would cost more, than most of the radios.
And that's why commercial radio broadcasting is still analog.