Answer:
The maximum height of the ball is 2 m.
Explanation:
Given that,
Mass of ball = 50 g
Height = 1.0 m
Angle = 30°
The equation is

We need to calculate the velocity
Using conservation of energy

Here, ball at rest so initial kinetic energy is zero and at the bottom the potential energy is zero

Put the value into the formula

Put the value into the formula




We need to calculate the maximum height of the ball
Using again conservation of energy

Here, h = y highest point
Put the value into the formula



Put the value of y in the given equation




Hence, The maximum height of the ball is 2 m.
Answer:
(1) V = 0.2 J (2) 0.05J
Explanation:
Solution
Given that:
K = 160 N/m
x = 0.05 m
Now,
(1) we solve for the initial potential energy stored
Thus,
V = 1/2 kx² = 0.5 * 160 * (0.05)²
Therefore V = 0.2 J
(2)Now, we solve for how much of the internal energy is produced as the toy springs up to its maximum height.
By using the energy conversion, we have the following
ΔV = mgh
=(0.1/9.8) * 9.8 * 1.5 = 0.15J
The internal energy = 0.2 -0.15
=0.05J
I’d say it’s 8 or 80
Hopefully this helps sorry
Answer:
Explanation:
Let the balls collide after time t .
distance covered by falling ball
s₁ = v₀ t + 1/2 g t²
distance covered by rising ball
s₂ = v₀ t - 1/2 g t²
Given ,
s₁ + s₂ = D
D = v₀ t + 1/2 g t² + v₀ t - 1/2 g t²
= 2v₀ t
t = D / 2v₀
s₂ = v₀ t - 1/2 g t²
= v₀ x D / 2v₀ - (1/2) x g x D² / 4v₀²
= D / 2 - gD² / 8 v₀²
Im think its A. A release of a large amount 9f energy