The rate of heat transfer by the air conditioner using constant specific heat of 1.004kj/kg.K is 15.06 kW.
<h3>What is the rate of heat transfer?</h3>
Rate of heat transfer is the power rating of the machine.
Work done and changes in potential and kinetic energy are neglected since it is a steady state process.
The specific heat in terms of specific heat capacity and temperature change is given as:


The rate of heat transfer, is then determined as follows:
- Qout = flow rate × specific heat
Qout = 0.75 × 20.08 = 15.06 kW
Therefore, the rate of heat transfer by the air conditioner is 15.06 kW.
Learn more about rate of heat transfer at: brainly.com/question/17152804
#SPJ1
Answer:
The current through each lamp is 0.273 Amperes
Power dissipated in each lamp is 0.082W
Explanation:
Battery v = 1.5 V
Each lamp has resistance, r = 1.1 Ohms
The 5 lamps in series will therefore have total resistance, R = 5 * 1.1 = 5.5 Ohms
The current through each lamp, I = v/R = 1.5 / 5.5 = 0.273 Amperes
Power dissipated in each lamp = I² * r = 0.273² * 1.1 = 0.082W
Answer:
Unique Selling Proposition
Explanation:
Unique Selling Proposition (USP) is the distinguishing feature that makes one product or business better than its competitor in the market. Jen has developed a competitive advantage of the new sunglasses brand making the company to sell their products. This is an example of USP.
Answer:
Hand tools based on job requirement and its importance and the classification of hand tools according to its function and its importance are discussed below in details.
Explanation:
Hand tools based on work requirement is essential because Every tool is specifically invented for a particular purpose, so picking the accurate tool will also reduce the amount of energy needed to get work done right without causing injury or harm to either the tools or the exterior being worked on.
classifying of hand tools: wrenches, screwdrivers, cutters, striking tools, hammer tool or struck, pliers, vise, clamps, snips, saws, drills, and knives.
I think it’s is false I’m not that sure