Answer:
a) 6.4 mg/l
b) 5.6 mg/l
Explanation:
Given data:
effluent Discharge Q_w = 1.0 m^3.s
Ultimate BOD L_w = 40 mg/l
Discharge of stream Q_r = 10 m^3.s
Stream ultimate BOD L_r = 3 mg/l
a) Ultimate BOD of mixture

b) utlimate BOD at 10,000 m downstream

putting 
t = 0.578 days
we know



Answer:
hello your question has some missing information attached to the answer is the missing component
Answer : αaxial,p = -6.034 ksi ( compressive )
αbend,p = 19.648 ksi ( tensile )
Explanation:
αaxial, p =
equation 1
αbend, p =
equation 2
P = load = 35 kips
A = area of column = 5.8 
d = column cross section depth = 9.5 in
= 55.0 
Hence equation 1 becomes
αaxial,p = -35 / 5.8 = - 6.034 ksi ( compressive )
equation 2 becomes
αbend, p =
= + 19.648 ksi ( tensile )
Answer:
increases by a factor of 6.
Explanation:
Let us assume that the initial cross sectional area of the pipe is A m² while the initial velocity of the water is V m/s², hence the flow rate of the water is:
Initial flow rate = area * velocity = A * V = AV m³/s
The water speed doubles (2V m/s) and the cross-sectional area of the pipe triples (3A m²), hence the volume flow rate becomes:
Final flow rate = 2V * 3A = 6AV m³/s = 6 * initial flow rate
Hence, the volume flow rate of the water passing through it increases by a factor of 6.
youn need to use your hands
Answer:
identify function of the system unit and its components