Inertia
the awnswer is inertia b
The force tending to lift the load (vertical force) is equal to <u>22.5N.</u>
Why?
Since the boy is pulling a load (150N) with a string inclined at an angle of 30° to the horizontal, the total force will have two components (horizontal and vertical component), but we need to consider the given information about the tension of the string which is equal to 105N.
We can calculate the vertical force using the following formula:

Hence, we can see that <u>the force tending to lift the load</u> off the ground (vertical force) is equal to <u>22.5N.</u>
Have a nice day!
The answer is Air Resistance
Answer:
100 ÷ 9.58 = 10.44 (approximate answer)
Answer:
1.15*10^-7 N/m²
Explanation:
Radiation pressure is the pressure exerted on any surface, as a result of the exchange of momentum between the object and its electromagnetic field.
The formula to calculate radiation pressure on a perfect absorber is
P = s/c, where
P = radiation pressure
s = intensity of light
c = speed of light
Now, on substituting the values and plugging it into the equation, we have
P = 34.5 / 3*10^8
P = 1.15*10^-7 N/m²
therefore, radiation pressure is found to be 1.15*10^-7 N/m²