The total displacement of the toy car at the given positions is 0.
The given parameters;
- <em>First displacement of the car, = 5 cm left</em>
- <em>Second displacement of the car, = 8 cm right</em>
- <em>Third displacement of the car, = 3 cm to the left</em>
The total displacement of the car is calculated as follows;
- <em>Let the </em><em>left </em><em>direction be "</em><em>negative </em><em>direction"</em>
- <em>Let the </em><em>right </em><em>direction be "</em><em>positive </em><em>direction"</em>

Thus, the total displacement of the toy car at the given positions is 0.
Learn more about displacement here: brainly.com/question/18158577
Answer:
A and C is about 12 cm away from each other.
Explanation:
Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:

or

where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:

Answer:
X-rays go all the way through the body, but ultraviolet rays do not.
Explanation:
An x-ray will show inside the body, but uv light isn't strong enough to go all the way through the body.
Answer: hello the complete question is attached below
answer :
r2 = 4r1
Explanation:
Electric field strength = F / q
we will assume the rod has an infinite length
For an infinitely charged rod
E ∝ 1/ r
considering two electric fields E1 and E2 at two different locations as described in the question
E1/E2 = r1/r2 ----- ( 2 )
<u>Calculate for r2 when E2 = E1/4 </u>
back to equation 2
E1 / (E1/4) = r1 / r2
∴ r2 = 4r1