Answer:
The law of reflection states that the angle of incidence = the angle of reflection.
Explanation:
Reflection is the phenomenon that occurs when a ray of light hits the boundary between two media and it is reflected back into the first medium.
In such a situation, we call:
- angle of incidence: it is the angle between the direction of the incident ray and the normal to the surface
- angle of reflection: it is the angle between the direction of the reflected ray and the normal to the surface
There is a precise relationship between the angle of incidence and the angle of reflection. In fact, the Law of Reflection states that:
- The incident ray, the reflected ray and the normal to the surface all lie within the same plane
- The angle of reflection is equal to the angle of incidence
Answer:

Explanation:
The electric field equation of a electromagnetic wave is given by:
(1)
- E(max) is the maximun value of E, it means the amplitude of the wave.
- k is the wave number
- ω is the angular frequency
We know that the wave length is λ = 700 nm and the peak electric field magnitude of 3.5 V/m, this value is correspond a E(max).
By definition:
And the relation between λ and f is:




The angular frequency equation is:


![\omega=2.69*10^{15} [rad/s]](https://tex.z-dn.net/?f=%5Comega%3D2.69%2A10%5E%7B15%7D%20%5Brad%2Fs%5D)
Therefore, the E equation, suing (1), will be:
(2)
For the magnetic field we have the next equation:
(3)
It is the same as E. Here we just need to find B(max).
We can use this equation:



Putting this in (3), finally we will have:
(4)
I hope it helps you!
The mechanical energy of the girl will be conserved because the system is isolated and the initial potential energy will be equal to final kinetic energy.
<h3>
What is the law of conservation of energy?</h3>
The law of conservation of energy states that energy can neither be created nor destroyed but can be transformed from one form to another.
The change in the potential energy of the launched from a height into the pool without friction from the given height h is calculated by applying the following kinematic equation.
ΔP.E = ΔK.E
where;
- ΔP.E is change in potential energy of the child
- ΔK.E is change in the kinetic energy of the child
mghf - mghi = ¹/₂mv² - ¹/₂mu²
where;
- m is the mass of the girl
- g is acceleration due to gravity
- hi is the initial height of the girl
- hf is the final height when she is launched into the pool
- u is the initial velocity
- v is the final velocity of the girl
Thus, for every closed or isolated system such as this case, mechanical energy is always conserved because the initial potential energy of the girl will be converted into her final kinetic energy.
Learn more about conservation of mechanical energy here: brainly.com/question/332163
#SPJ1
Answer:
So Tammy must move with speed 4.76 m/s in opposite direction of Jackson
Explanation:
As per law of conservation of momentum we know that there is no external force on it
So here we can say that initial momentum of the system must be equal to the final momentum of the system
now we have

final they both comes to rest so here we can say that final momentum must be zero
now we have

