1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mash [69]
3 years ago
7

What is the difference between the pressure head at the end of a 150m long pipe of diameter 1m coming from the bottom of a reser

voir with a water surface 40m above a receiving reservoir delivering 10m3s-1; and water coming through an identical route in an open rectangular channel of width 1m with the same delivery. Assume that the Darcey Weisbach friction factor is 0.0019 and that the Manning n for the channel is 0.013.
Engineering
1 answer:
uysha [10]3 years ago
4 0

Answer:

\frac {p_2- p_1}{\rho g} = 31.06 m

Explanation:

from bernoulli's theorem we have

\frac{p_1}{\rho g} + \frac{v_1^{2}}{2g} +z_1 = \frac{p_2}{\rho g} + \frac{v_2^{2}}{2g} +z_2  + h_f

we need to find pressure head difference i.e.

\frac {p_2- p_1}{\rho g} = (z_1 - z_2) - h_f

where h_f id head loss

h_f = \frac{flv^{2}}{D 2g}

velocity v =\frac{1}{n} * R^{2/3} S^{2/3}

S = \frac{\delta h}{L} = \frac{40}{150} = 0.267

hydraulic mean radius R =\frac{A}{P} = \frac{hw}{2h+w}

R = \frac{40*1}{2*40+1} = 0.493 m

so velocity is  =\frac{1}{0.013} * 0.493^{2/3} 0.267^{1/2}

v = 24.80 m/s

head loss

h_f = \frac{0.0019*150*24.80^{2}}{1* 2*9.81}

h_f  =8.93 m

pressure difference is

\frac {p_2- p_1}{\rho g} = 40 - 8.93 = 31.06 m

\frac {p_2- p_1}{\rho g} = 31.06 m

You might be interested in
What is the composition, in atom percent, of an alloy that contains 44.5 lbmof Ag, 83.7 lbmof Au, and 5.3 lbmof Cu? What is the
Vlad [161]

Answer:

rr

Explanation:

4 0
3 years ago
A(n)_____ is a device that provides the power and motion to manipulate the moving parts of a valve or damper used to control flu
Lesechka [4]

Answer:

Out of the four options provided

option A. actuator

is correct

Explanation:

An actuator is the only device out of the four mentioned devices that provides power and ensures the motion in it in order to manipulate the movement of the moving parts of the damper or a valve used whereas others like ratio regulator are used to regulate air or gas ratio and none mof the 3 remaining options serves the purpose

5 0
3 years ago
Air (cp = 1.005 kJ/kg·°C) is to be preheated by hot exhaust gases in a cross-flow heat exchanger before it enters the furnace. A
uysha [10]

Answer:

Q=67.95 W

T=119.83°C

Explanation:

Given that

For air

Cp = 1.005 kJ/kg·°C

T= 20°C

V=0.6 m³/s

P= 95 KPa

We know that for air

P V = m' R T

95 x 0.6 = m x 0.287 x 293

m=0.677 kg/s

For gas

Cp = 1.10 kJ/kg·°C

m'=0.95 kg/s

Ti=160°C   ,To= 95°C

Heat loose by gas = Heat gain by air

[m Cp ΔT] for air =[m Cp ΔT] for gas

by putting the values

0.677 x 1.005 ( T - 20)= 0.95 x 1.1 x ( 160 -95 )

T=119.83°C

T is the exit temperature of the air.

Heat transfer

Q=[m Cp ΔT] for gas

Q=0.95 x 1.1 x ( 160 -95 )

Q=67.95 W

7 0
3 years ago
A counter-flow double pipe heat exchanger is heat heat water from 20 degrees Celsius to 80 degrees Celsius at the rate of 1.2 kg
lakkis [162]

Answer:

L=107.6m

Explanation:

Cold water in: m_{c}=1.2kg/s, C_{c}=4.18kJ/kg\°C, T_{c,in}=20\°C, T_{c,out}=80\°C

Hot water in: m_{h}=2kg/s, C_{h}=4.18kJ/kg\°C, T_{h,in}=160\°C, T_{h,out}=?\°C

D=1.5cm=0.015m, U=649W/m^{2}K, LMTD=?\°C, A_{s}=?m^{2},L=?m

Step 1: Determine the rate of heat transfer in the heat exchanger

Q=m_{c}C_{c}(T_{c,out}-T_{c,in})

Q=1.2*4.18*(80-20)

Q=1.2*4.18*(80-20)

Q=300.96kW

Step 2: Determine outlet temperature of hot water

Q=m_{h}C_{h}(T_{h,in}-T_{h,out})

300.96=2*4.18*(160-T_{h,out})

T_{h,out}=124\°C

Step 3: Determine the Logarithmic Mean Temperature Difference (LMTD)

dT_{1}=T_{h,in}-T_{c,out}

dT_{1}=160-80

dT_{1}=80\°C

dT_{2}=T_{h,out}-T_{c,in}

dT_{2}=124-20

dT_{2}=104\°C

LMTD = \frac{dT_{2}-dT_{1}}{ln(\frac{dT_{2}}{dT_{1}})}

LMTD = \frac{104-80}{ln(\frac{104}{80})}

LMTD = \frac{24}{ln(1.3)}

LMTD = 91.48\°C

Step 4: Determine required surface area of heat exchanger

Q=UA_{s}LMTD

300.96*10^{3}=649*A_{s}*91.48

A_{s}=5.07m^{2}

Step 5: Determine length of heat exchanger

A_{s}=piDL

5.07=pi*0.015*L

L=107.57m

7 0
3 years ago
What is the net force acting on a car cruising at a constant velocity of 70 km/h (a) on a level road and (b) on an uphill road?
ElenaW [278]

Answer:

a) zero b) zero

Explanation:

Newton's first law tells us that a body remains at rest or in uniform rectilinear motion, if a net force is not applied on it, that is, if there are no applied forces or If the sum of forces acting is zero. In this case there is a body that moves with uniform rectilinear motion which implies that there is no net force.

4 0
3 years ago
Other questions:
  • Students are expected to respond to one of the two questions described below. Students should provide examples to clarify their
    12·1 answer
  • Determine the minimum force P to prevent the 30 kg uniform rod AB from sliding. The contact surface at B is smooth, whereas the
    13·1 answer
  • Check the answer that best describes the relationship between f(x) and x. (For example if f(x) is Θ(x) check that as your answer
    12·1 answer
  • The specific gravity of a substance that has mass of 10 kg and occupies a volume of 0.02 m^3 is a) 0.5 b) 1.5 c) 2.5 d) 3.5 e) n
    11·1 answer
  • Its an opinion!!!!
    8·1 answer
  • Ignore swell and shrinkage for this problem.
    5·1 answer
  • What do you need for an object to fly?
    10·1 answer
  • Describe with an example how corroded structures can lead to environment pollution? ​
    13·1 answer
  • Given the inherent costs of regulation it is safe to say that there is always a negative economic impact associated with regulat
    7·1 answer
  • A heating element for a cooking appliance is stretched too far during installation. What action can be performed? A. Dispose of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!