1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dexar [7]
3 years ago
6

A planet has a gravitational acceleration on its surface of 2.2 times Earth's gravitational acceleration on its surface. The pla

net's radius is five times Earth's radius. What is the mass of the planet, in terms of Earth masses, ME?
Physics
1 answer:
lesantik [10]3 years ago
5 0

Answer:

The mass of the planet is 55 times the mass of earth.

Explanation:

From the inverse-square gravitation law,

F = (GMm/r²)

If the weight of a body (the force with which the earth attracts a body to its centre) is to be calculated,

F = mg

m = mass of the body,

g = acceleration due to gravity

mg = (GMm/r²)

G = Gravitational constant

M = mass of the earth

m = mass of body

r = distance between the body and the centre of the earth = radius of the earth

The acceleration due to gravity is given by

g = (GM/r²)

Making the mass of the earth, the subject of formula

M = (gr²/G) (eqn 1)

So, the planet described,

Let the acceleration due to gravity on the planet be g₁

Mass of the planet be M₁

Radius of the planet be r₁

g₁ = 2.2g

r₁ = 5r

M₁ = ?

Note that the gravitational constant is the same for both planets.

So, we can write a similar expression for the planet's acceleration due to gravity

g₁ = (GM₁/r₁²)

Substituting all the parameters known in terms of their corresponding earth values

2.2g = [GM₁/(5r)²]

2.2g = [GM₁/25r²]

M₁ = (55gr²/G)

Recall the expression for the mass of the earth

M = (gr²/G)

M₁ = 55 M

The mass of the planet, in terms of Earth masses = 55M

The mass of the planet is 55 times the planet of earth.

Hope this Helps!!!

You might be interested in
An ideal gas is enclosed in a piston, and 1600 J of work is done on the gas. As this happens, the internal energy of the gas inc
Phantasy [73]

Answer:

- 1100 J heat flows out

Explanation:

dW = - 1600 J (as work is done on the gas)

dU = 500 J

dQ = ?

According to the first law of thermodynamics

dQ = dU + dW

dQ = 500 - 1600

dQ = - 1100 J

As heat is negative so it flows out.

3 0
3 years ago
A car is stopped for a traffic signal. When the light turns green, the car accelerates, increasing its speed from zero to 9.41 m
Svetach [21]

Answer:

the impulse experienced by the passenger is 630.47 kg

Explanation:

Given;

initial velocity of the car, u = 0

final velocity of the car, v = 9.41 m/s

time of motion of the car, t = 4.24 s

mass of the passenger in the car, m = 67 kg

The impulse experienced by the passenger is calculated as;

J = ΔP = mv - mu = m(v - u)

           = 67(9.41 - 0)

           = 67 x 9.41

           = 630.47 kg

Therefore, the impulse experienced by the passenger is 630.47 kg

8 0
3 years ago
What is the frequency of a photon with an energy of 4. 56 x 10^-19 j
Sauron [17]

The frequency of a photon with an energy of 4.56 x 10⁻¹⁹ J is 6.88×10¹⁴ s⁻¹.

<h3>What is a frequency?</h3>

The number of waves that travel through a particular point in a given length of time is described by frequency. So, if a wave takes half a second to pass, the frequency is 2 per second.

Given that the energy of the photon is 4.56 x 10⁻¹⁹ J. Therefore, the frequency of the photon can be written as,

\rm \gamma = \dfrac{E}{h} = \dfrac{4.56x10^{-19} J}{6.626 \times 10^{-34}\ Jsec^{-1}}\\\\\\\gamma  = 6.88 \times 10^{14}\ s^{-1}

Hence, the frequency of a photon with an energy of 4.56 x 10⁻¹⁹ J is 6.88×10¹⁴ s⁻¹.

Learn more about Frequency:

brainly.com/question/5102661

#SPJ4

5 0
2 years ago
Read 2 more answers
Which of the following shows kinetic energy being converted into potential energy?
Komok [63]
B) a rock being tossed high into the air
3 0
3 years ago
If the wave represents a sound wave, explain how increasing amplitude will affect the loudness of the sound? If we decrease the
Viktor [21]

Answer:

Explanation:

Think of a sound wave like a wave on the ocean, or lake... It's not really water moving, as much as it's energy moving through the water. Ever see something floating on the water, and notice that it doesn't come in with the wave, but rides over the top and back down into the trough between them? Sound waves are very similar to that. If you looked at a subwoofer speaker being driven at say... 50 cycles a second, you'd actually be able to see the speaker cone moving back and forth. The more power you feed into the speaker, the more it moves back and forth, not more quickly, as that would be a higher frequency, but further in and further out, still at 50 cycles per second. Every time it pushed out, it's compressing the air in front of it... the compressed air moves away from the speaker's cone, but not as a breeze or wind, but as a wave through the air, similar to a wave on the ocean

More power, more amplitude, bigger "wave", louder ( to the human ear) sound.

If you had a big speaker ( subwoofer ) and ran a low frequency signal with enough power in it, you could hold a piece of paper in front of it, and see the piece of paper move in and out at exactly the same frequency as the speaker cone. The farther away from the speaker you got, the less it'd move as the energy of the sound wave dispersed through the room.

Sound is a wave

We hear because our eardrums resonates with this wave I.e. our ear drums will vibrate with the same frequency and amplitude. which is converted to an electrical signal and processed by our brain.

By increasing the amplitude our eardrums also vibrate with a higher amplitude which we experience as a louder sound.

Of course when this amplitude is too high the resulting resonance tears our eardrums so that they can't resonate with the sound wave I.e. we become deaf

6 0
2 years ago
Other questions:
  • You are working during your summer break as an amusement park ride operator. The ride you are controlling consists of a large ve
    8·1 answer
  • What is the final concentration of DD at equilibrium if the initial concentrations are [A][A]A_i = 1.00 MM and [B][B]B_i = 2.00
    11·1 answer
  • Is everyone in your class able to hear a quiet sound equally well?
    6·1 answer
  • What is number 6 and 7 need help ASAP!!
    8·2 answers
  • To apply the principle of superposition to overlapping waves, you should _____ of the individual waves.
    15·1 answer
  • A grasshopper jumps a horizontal distance of 1.50 m from rest, with an initial velocity at a 43.0° angle with respect to the hor
    10·2 answers
  • A spacecraft is launched from Earth toward the moon.
    6·2 answers
  • Hearing rattles from a snake, you make two rapid displacements of magnitude 1.8 m and 2.4m. Draw sketches, roughly to scale, to
    10·1 answer
  • Figure 13 shows a child’s toy . The toy hangs from a hook in the ceiling.
    12·1 answer
  • 3
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!