1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lapatulllka [165]
2 years ago
15

Responsible for reflex, maintain muscles tone and dopamine. 8 letter word

Physics
1 answer:
Lady bird [3.3K]2 years ago
3 0
Exercise is the answer hope i helped you 
You might be interested in
Cars A and B are racing each other along the same straight road in the following manner: Car A has a head start and is a distanc
4vir4ik [10]

The question is incomplete. Here is the complete question.

Cars A nad B are racing each other along the same straight road in the following manner: Car A has a head start and is a distance D_{A} beyond the starting line at t = 0. The starting line is at x = 0. Car A travels at a constant speed v_{A}. Car B starts at the starting line but has a better engine than Car A and thus Car B travels at a constant speed v_{B}, which is greater than v_{A}.

Part A: How long after Car B started the race will Car B catch up with Car A? Express the time in terms of given quantities.

Part B: How far from Car B's starting line will the cars be when Car B passes Car A? Express your answer in terms of known quantities.

Answer: Part A: t=\frac{D_{A}}{v_{B}-v_{A}}

              Part B: x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Explanation: First, let's write an equation of motion for each car.

Both cars travels with constant speed. So, they are an uniform rectilinear motion and its position equation is of the form:

x=x_{0}+vt

where

x_{0} is initial position

v is velocity

t is time

Car A started the race at a distance. So at t = 0, initial position is D_{A}.

The equation will be:

x_{A}=D_{A}+v_{A}t

Car B started at the starting line. So, its equation is

x_{B}=v_{B}t

Part A: When they meet, both car are at "the same position":

D_{A}+v_{A}t=v_{B}t

v_{B}t-v_{A}t=D_{A}

t(v_{B}-v_{A})=D_{A}

t=\frac{D_{A}}{v_{B}-v_{A}}

Car B meet with Car A after t=\frac{D_{A}}{v_{B}-v_{A}} units of time.

Part B: With the meeting time, we can determine the position they will be:

x_{B}=v_{B}(\frac{D_{A}}{v_{B}-v_{A}} )

x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Since Car B started at the starting line, the distance Car B will be when it passes Car A is x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}} units of distance.

5 0
2 years ago
The earth's radius is 6.37×106m; it rotates once every 24 hours. What is the earth's angular speed? What is the speed of a point
Zarrin [17]

Answer:

a) w = 7.27 * 10^-5 rad/s

b) v1 = 463.1 m/s

c) v1 = 440.433 m/s

Explanation:

Given:-

- The radius of the earth,  R = 6.37 * 10 ^6 m

- The time period for 1 revolution T = 24 hrs

Find:

What is the earth's angular speed?

What is the speed of a point on the equator?

What is the speed of a point on the earth's surface located at 1/5 of the length of the arc between the equator and the pole, measured from equator?

Solution:

- The angular speed w of the earth can be related with the Time period T of the earth revolution by:

                                  w = 2π / T

                                  w = 2π / 24*3600

                                  w = 7.27 * 10^-5 rad/s

- The speed of the point on the equator v1 can be determined from the linear and rotational motion kinematic relation.

                                 v1 = R*w

                                 v1 = (6.37 * 10 ^6)*(7.27 * 10^-5)

                                 v1 = 463.1 m/s

- The angle θ subtended by a point on earth's surface 1/5 th between the equator and the pole wrt equator is.

                                 π/2  ........... s

                                 x     ............ 1/5 s

                                 x = π/2*5 = 18°    

- The radius of the earth R' at point where θ = 18° from the equator is:

                                R' = R*cos(18)

                                R' = (6.37 * 10 ^6)*cos(18)

                                R' = 6058230.0088 m

- The speed of the point where θ = 18° from the equator v2 can be determined from the linear and rotational motion kinematic relation.

                              v2 = R'*w

                              v2 = (6058230.0088)*(7.27 * 10^-5)

                              v2 = 440.433 m/s

5 0
3 years ago
For the following elementary reaction 2br• -> br2-. The rate of consumption of the reaction and the rate of formation of prod
Scorpion4ik [409]

Answer: -\frac{1}{2}\times \frac{d[Br^.]}{dt}=+\frac{d[Br_2]}{dt}

Explanation:

Rate of a reaction is defined as the rate of change of concentration per unit time.

Thus for reaction:

2Br^.\rightarrow Br_2

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.

Rate=-\frac{d[Br^.]}{2dt}

or Rate=+\frac{d[Br_2]}{dt}

Thus -\frac{d[Br^.]}{2dt}=+\frac{d[Br_2]}{dt}

4 0
3 years ago
Which is greater, the force exerted by the Earth on the Sun, or the force exerted by the Sun on the Earth? Why?
LekaFEV [45]

Answer:

There is no great force, the force exerted by the Earth on the Sun, and the force exerted by the Sun on the Earth are equal

Explanation:

By definition...

3 0
2 years ago
If the statement is true, select True. If it is false, select False.
RUDIKE [14]

Answer:

false

Explanation:

6 0
2 years ago
Other questions:
  • A ball is projected horizontally from the top of a cliff. At the same moment, a second identical ball is dropped from rest from
    9·1 answer
  • Two infinite wires 20 cm apart each carry a current of 3 A into the paper. d I I d/2 d/2 At a distance d 2 below their midpoint,
    14·1 answer
  • 1. The activation energy to form interstitial carbon in iron at room temperature is around 0.77 eV, and in vanadium at room temp
    7·1 answer
  • What country did Mussolini invade in 1935 What atrocities were committed there?
    10·1 answer
  • A transverse wave is set up in a very long string. The oscillator is set at 20.0 Hz, and the wave speed is 78 m/s. The amplitude
    6·1 answer
  • A hiker walks 9.4 miles at an angle of 60° south of west. Find the west and south components of the walk. Round your answers to
    14·1 answer
  • What kind of units as force measured by
    15·2 answers
  • 1. Defined capacitance of a capacitor. If the radius of a spherical conductor is equal to sum of all digits of your registration
    6·1 answer
  • Which equation best summarizes Newton’s 2nd law:
    13·1 answer
  • Suppose the gravitational force between two spheres is 30 N. If the magnitude of both masses doubles, and the distance between t
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!