The answer to the question is A
Answer:
The magnetic force on the section of wire is
.
Explanation:
Given that,
Current 
Length = 0.750 m
Magnetic field 
We need to calculate the magnetic force on the section of wire
Using formula of magnetic force


Since, 

Hence, The magnetic force on the section of wire is
.
Answer:
7.50 cm
Explanation:
The formula
1/v + 1/u = 1/f
Is used.
where.
u is the object distance.
v is the image distance.
f is the focal length of the lens.
1/v + 1/15 = 1/5
1/v = 1/5 - 1/15
1/v = (3-1)/15
1/v = 2/15
2v = 15
V = 15/2
V = 7.5 cm
For focal length, f in lens is always taken as negative for concave and positive for convex. ... And for image distance, V in lens it is taken as positive in Convex lens since image is formed on +X side. It is taken as negative in Concave lens since image is formed in -X side of the Cartesian.
Spring potential energy:
E = 0.5 * k * x²
k spring constant
x spring compression
x = √(2 * E / k) = 0.7
Answer:

3257806.62409 m/s
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of Sun = 
r = Radius of Star = 20 km
u = Initial velocity = 0
v = Final velocity
s = Displacement = 16 m
a = Acceleration
Gravitational acceleration is given by

The gravitational acceleration at the surface of such a star is 

The velocity of the object would be 3257806.62409 m/s