The force equation can easily prove this. F=ma. This states that the force on an object is equal to mass times acceleration. If the mass stays the same and the velocity of the cars increases than that means there is a larger force. This is because in both cases the cars are stopping in almost an instant and the times of the crashes are theoretically identical. Acceleration is the change in velocity over time. If the velocity is higher with the same amount of time than that means there is a higher acceleration. If you plug a higher acceleration into the force equation then you wind up with a higher force and in turn a more damaging collision.
<span />
I disagree with that opinion, and I have solid Physics to back me up.
The forces of gravity are always equal in both directions. The sun pulls the Earth with exactly the same force with which the Earth pulls the sun.
It may seem weird, but your weight on Earth is exactly the same as the Earth's weight on you. For the same reason.
Answer:
Li has less mass and therefore less inertia, so he can change his motion more easily than Raj.
Explanation:
Inertia describes the resistance of an object to any change in its state of motion, and it depends on the mass of the object only. In particular:
- if an object has a large inertia (large mass), then it is more difficult to change its state of motion (i.e. to put it in motion, or to slow it down, or to change its direction of motion)
- if an object has small inertia (small mass), then it is more easy to change its state of motion
In this problem, Li has less mass than Raj, so he has less inertia, therefore he can change his motion more easily than Raj.
I believe that this question has the following choices to
choose from:
placer deposits
fossil compaction
hydrothermal solutions
igneous processes
Actually among all, I have never encountered an ore that
formed due to fossil compaction. I suppose we can get minerals such as marble
or lime but not ores. So the answer is:
<span>fossil compaction (answer)</span>
The rotational speed of the person is 0.4 rad/s.
<h3>
Rotational speed (rad/s)</h3>
The rotational speed of the person in radian per second is calculated as follows;
v = ωr
where;
- v is linear speed in m/s
- r is radius in meters
- ω is speed in rad/s
ω = v/r
ω = 2/5
ω = 0.4 rad/s
Thus, the rotational speed of the person is 0.4 rad/s.
Learn more about rotational speed here: brainly.com/question/6860269