Answer:
0.00011 JK.
The process does NOT violate the second law of thermodynamics
Explanation:
The following parameters are given which are going to help in solving for the change in entropy of the system. The term "entropy'' simply means the degree of disorderliness of a system.
=> The temperature of container A = 305 K, the temperature of container B = 295 K and the amount of heat generated when the containers are placed in contact with each other = 1. 1 J.
The change in entropy of the hot container = -(1/305) = - 0.00328 J/K.
The change in entropy of the cold container = 1/295 = 0.00339 J/K.
Therefore, the change in the entropy of the system = - 0.00328 J/K + 0.00339 J/K = 0.00011 JK.
Note that the change in entropy of the system gives a positive value. Hence, this process does not violate the second law of thermodynamics.
The process does NOT violate the second law of thermodynamics.
Answer:
The number of moles of the gas is 9.295 moles or 9.30 moles
Explanation:
We use PV = nRT
Where P = 4.87 atm;
V = 67.54 L
R= 0.0821Latm/molK
T = 158 C = 158 +273 K = 431 K
the number of moles can be obtained by substituting the values in the respective columns and solve for n
n = PV / RT
n = 4.87 * 67.54 / 0.0821 * 431
n = 328.9198 / 35.3851
n = 9.295moles
The number of moles is approximately 9.30moles.
I believe the correct answer is the second option. There will be two cobalt atoms in one formula unit of cobalt (III) oxide. It has a chemical formula of Co2O3. This compound is does not naturally occur so it is being synthesized. It is mostly used as bleaching agent.
Answer:
1s2 2s2 2p2
Explanation:
it has 6 electrons in two energy levels so the sub levels are 1s, 2s and 2p
Answer:
Age ≅ 7500 years
Explanation:
All radioactive decay is 1st order kinetics and described by the expression
A = A₀e^-kt => t = ln(A/A₀) / -k
k = 0.693 / t(half life) = (0.693 / 5730)yrs⁻¹ = 1.21 x 10⁻⁴ yrs⁻¹
t = Age = [ln(0.103/0.255) / - 1.21 x 10⁻⁴] yrs = 7500 years