Resistance in wires is transformed into thermal energy, you can observe this fact when you are charging your phone and feel the wire is quite hot. That is a result of the resistance.
Answer:
a) 6.4 x 10^-12 cm^3
b) 17 x 10^-6 mm^2
Explanation
a). The shape is assumed to be spherical The volume = volume of a sphere = \frac{4}{3} \pi r^3
3
4
πr
3
V = \frac{4}{3}*3.142* 1.15^3
3
4
∗3.142∗1.15
3
= 6.3715 μm^3
1 μm^3 = 10^-12 cm^3
6.3715 μm^3 = 6.3715 x 10^-12 cm^3
==> 6.4 x 10^-12 cm^3
The relationship is directly proportional; as temperature increases, volume increases in the same way.
Charles's law states that at a constant pressure, the volume of fixed a mass of a gas is directly proportional to its absolute temperature or kelvin temperature.
Mathematically, this law can be written as follows;

This law explains the direct relationship between Volume of the gas and its Kelvin temperature. That is, as Temperature increases, the volume of the gas increases.
Thus, the correct statement is "The relationship is directly proportional; as temperature increases, volume increases in the same way".
Learn more here: brainly.com/question/16927784
The current is defined as the ratio between the charge Q flowing through a certain point of a wire and the time interval,

:

First we need to find the net charge flowing at a certain point of the wire in one second,

. Using I=0.92 A and re-arranging the previous equation, we find

Now we know that each electron carries a charge of

, so if we divide the charge Q flowing in the wire by the charge of one electron, we find the number of electron flowing in one second:
Oxygenated blood that has oxygen in them while de-oxygenated blood has carbon dioxide. in which the oxygenated blood carries the oxygen throughout the body since that cells need oxygen to function. called "gas exchange." once the cells got their required oxygen. the carbon dioxide needs somewhere to go, thus having deoxygenated blood. and that carbon dioxide needs to get out of the body