A spinning wheel
and the blade of a kitchen blender both illustrate rotation.
A child swinging on a swing
illustrates oscillation, or 'harmonic' motion.
A balloon being blown up is an example of dilation or inflation.
A sliding hockey puck demonstrates the concept of translation.
From the solution that I have done, the wavelength in the question that we have is 31.88 cm
<h3>How to solve for the wavelength</h3>
The frequency in the question is given as 40/30 = 1.33 hz
Next we have to solve for V
= 425/10
= 42.5 cm/s
v = frequency * wavelength
we have to put in the values in the formula. This would be
42.5 = 1.33 x wavelength
we have to divide through by 1.33 to get the wavelength. This would be
42.5/1.333 = wavelength
31.88 cm = wavelength
Hence we can say that the wavelength in the question that we have here is 31.88 cm
Read more on wavelength here:
brainly.com/question/10728818
#SPJ4
Answer:
24.5987 cm
Explanation:
A = 1900 cm^2
Let r be the radius of disc.
The area of disc is given by
A = π r²
Where, π = 31.4
1900 = 3.14 x r²
r² = 605.095
r = 24.5987 cm
Answer:
C
Explanation:
Sound waves speed up noticeably when moving through a solid or liquid, because all it is is just particles colliding; and particles are way closer together with those states of matter.
The speed of light can change when moving through different substances, but this is dependent on complicated factors such as frequency, polarization, intensity, et. cetera
The important part is that it does change speed, so your answer is C.
Hope this helps!
Answer:
THE GROUND IS THE MEDIUM OF SEISMIC WAVES