The Balanced Chemical Equation is as follow;
4 KO₂ + 2 CO₂ → 2 K₂CO₃ + 3 O₂
First find out the Limiting Reagent,
According to equation,
284 g (4 moles) KO₂ reacted with = 44.8 L (2 moles) of CO₂
So,
27.9 g of KO₂ will react with = X L of CO₂
Solving for X,
X = (44.8 L × 27.9 g) ÷ 284 g
X = 4.40 L of CO₂
Hence, to consume 27.9 g of KO₂ only 4.40 L CO₂ is required, while, we are provided with 29 L of CO₂, it means CO₂ is in excess and KO₂ is is limited amount, Therefore, KO₂ will control the yield of K₂CO₃. So,
According to eq.
284 g (4 moles) KO₂ formed = 138.2 g of K₂CO₃
So,
27.9 g of KO₂ will form = X g of K₂CO₃
Solving for X,
X = (138.2 g × 27.9 g) ÷ 284 g
X = 13.57 g of K₂CO₃
So, 13.57 g of K₂CO₃ formed is the theoretical yield.
%age Yield = 13.57 / 21.8 × 100
%age Yield = 62.24 %
Answer:
True
Explanation:
A magnetic field is made when an electric current flows through a wire.
Answer:
Stoichiometric Coefficients
The balanced equation makes it possible to convert information about one reactant or product to quantitative data about another element. Understanding this is essential to solving stoichiometric problems
Explanation:
Divide mass by the volume to find density.
Answer:
6
Explanation
every p sublevel holds up to 6 electrons
so the 4p sublevel must hold up to 6 electonsr