Answer:
0.82 MPa
Explanation:
the change in pressure 'σ'=160kPa
K= σ/∈
=> σ/3∈
K= 160/(3 x 0.065)
K=820 kPA=0.82 MPa
Thus,the bulk modulus of the tissue 'K' is 0.82 MPa
True if you look up the question Is velocity speed in a certain direction you would’ve gotten the answer but I’m pretty sure it’s true
Enclosed is some guidance algebra.I find this q a little confusing. It quotes "RC" which usually makes me think of electrical circuits and time constants based on converting calculating RC value and equating that to t for one time constant then 2RC for two time constants etc. The theory being that after 5 time constants - 5RC - a circuit is stable. BUT, this q then goes on to mention HALF LIFE. The curves for both half life and time constant are both exponential, as in the number e to the power of something, but the algebra is slightly different. I hope my algebra is ok.
Answer:
the charge per unit area on the plastic sheet is - 3.23 x 10⁻⁷ C/m²
Explanation:
given information:
styrofoam mass, m = 16 g = 0.016 kg
net charge, q = - 8.6 μC
to calculate the charge per unit area on the plastic sheet, we can use the following equation:

where
the force between the electric field
m = mass
g = gravitational force

where
q = charge
E = electric field
and
E = σ/2ε₀
where
ε₀ = permitivity
thus

mg = qσ/2ε₀
σ = (2mg ε₀)/q
= 2 (0.016) (9.8) (8.85 x 10⁻¹²)/( - 8.6 x 10⁻⁶)
= - 3.23 x 10⁻⁷ C/m²
They both provide a range of years of an object. I think. They’re just 2 different ways to tell the age of fossils or rocks