Answer:
option B
Explanation:
given,
height of building = 0.1 km
ball strikes horizontally to ground at = 65 m
speed at which the ball strike = ?
vertical velocity = 0 m/s
time at which the ball strike



t = 4.53 s
vertical velocity at the time 4.53 s = g × t = 9.8 × 4.53 = 44.39 m/s
horizontal velocity =
=14.35 m/s
speed of the ball =
= 46.65 m/s
hence, the speed of the ball just before it strike the ground = 47 m/s
The correct answer is option B
Answer
given,
mass of the ball = 3 kg
swing in vertical circle with radius = 2 m
work done by the gravity = ?
work done by the tension = ?
Work done by the gravity = - m g Δh
Δ h = 2 + 2 = 4 m
Work done by the gravity =
= -117.6 J
work done by gravity is equal to -117.6 J
Work done by tension will be equal to zero.
Zero because tension is always perpendicular to velocity
work done by tension is equal to 0 J
15 degrees because a glass of water won't do anything to a bath tub of 15 degree water
The centripetal acceleration is responsible
for the artificial gravity because the acceleration of an object moving in constant
circular motion causing from net external force is called centripetal
acceleration. It defines to the center or seeking the center.
Given the following:
Cylindrical space station
diameter = 275 meters; 137.5
meters for the radius
Standard gravity =
9.80665 m/s²
Using the formula:
w² x r =g
w² = g / r
w² = 9.80665 m/s²
/ 137.5 m
w² = 9.80665 m/s²
/ 137.5 m
w² = 0.0713 s²
Then take the roots
w = 0.267 this is radians per
second / 2 x (3.1416 which is the pi)
w = 0.0424 rps convert to rpm
w = 0.0424 r/s (1minute / 60
seconds)
w = 7.08 x 10⁻⁴ revolutions per minute