Answer:60 gm
Explanation:
Given
initial velocity of ball 
Force exerted by racquet 
time period of force 
final velocity of ball 
Racquet imparts an impulse to the ball which is given by



Answer:
The mass of the ice block is equal to 70.15 kg
Explanation:
The data for this exercise are as follows:
F=90 N
insignificant friction force
x=13 m
t=4.5 s
m=?
applying the equation of rectilinear motion we have:
x = xo + vot + at^2/2
where xo = initial distance =0
vo=initial velocity = 0
a is the acceleration
therefore the equation is:
x = at^2/2
Clearing a:
a=2x/t^2=(2x13)/(4.5^2)=1.283 m/s^2
we use Newton's second law to calculate the mass of the ice block:
F=ma
m=F/a = 90/1.283=70.15 kg
Answer:
Temperature decreases because the number of collision of the molecules decreases as they escape or evaporate. Molecules are in constant motion. Increase in temperature leads to increase in average kinetic energy of the molecules.
Answer:
The pickup truck and hatchback will meet again at 440.896 m
Explanation:
Let us assume that both vehicles are at origin at the start means initial position is zero i.e.
= 0. Both the vehicles will cross each other at same time so we will make equations for both and will solve for time.
Truck:
= 33.2 m/s, a = 0 (since the velocity is constant),
= 0
Using 
s = 33.2t .......... eq (1)
Hatchback:
,
= 0 m/s (since initial velocity is zero),
= 0
Using 
putting in the data we will get

now putting 's' value from eq (1)

which will give,
t = 13.28 s
so both vehicles will meet up gain after 13.28 sec.
putting t = 13.28 in eq (1) will give
s = 440.896 m
So, both vehicles will meet up again at 440.896 m.
Answer:
mass of the object is 2.18 kg
Explanation:
Given
Force (F) = 8.5 N = 8.5 kg.m/
acceleration (a) = 3.9 m/
Mass (m) = ?
We know that the newton's second law of motion gives the relation between mass of ab object. force acted upon and the amount the object is accelerated. It is expressed in the form of an equation:
F = ma
mass, m = F/a
= 
= 2.18 kg