Answer:
Some are large, some are small, some have more gravity then others. Some cant handle human life. Some are very cold some are very hot.
Explanation:
Answer:
Ag⁺(aq) + I⁻(aq) → AgI(s)
Explanation:
Net ionic equation is a way to write a chemical equation in which you are listing only the species that are participating in the reaction.
In the reaction:
AgNO₃(aq) + NaI(aq) → AgI(s) + NaNO₃(aq).
The ionic equation is:
Ag⁺(aq) + NO₃⁻(aq) + Na⁺(aq) + I⁻(aq) → AgI(s) + Na⁺(aq) + NO₃⁻(aq).
Now, listing only the species that are participating in the reaction:
<h3>Ag⁺(aq) + I⁻(aq) → AgI(s)</h3>
Answer: B, a fusion recrion creates waste material that is easier to store than fission.
Fusion produces far less harmful waste than fission does. The reliance of something independent like whether a reaction will stop on its own when something goes wrong is never indefinite (technological failures are unpredictable and destructive a lot of the time when it comes down to nuclear power).
Answer:
The electronic configuration of the element with Atomic number 19 is 2,8,8,1. The element is potassium. It is an alkali metal with one valence electron.
Answer: option C) II < III < I
i.e [OH−] < [H3O+] < I
Explanation:
First, obtain the pH value of I and II, then compare both with III.
For I
Recall that pH = -log (H+)
So pH3O = -log (H3O+)
= - log (1x10−5)
= 4
For II
pOH = - log(OH-)
= - log(1x10−10)
= 9
For III
pH = 6
Since, pH range from 1 to 14, with values below 7 to be acidic, 7 to be neutral, above 7 to be alkaline: then, 9 < 6 < 4
Thus, the following solutions from least acidic to most acidic is II < III < I