The complete balanced chemical reaction is written as:
AgNO3 + KCl ---> AgCl
+ KNO3
where AgCl is our
precipitate
So calculating for moles
of AgCl produced: MM AgCl = 143.5 g/mol
moles AgCl = 0.326 g /
(143.5 g/mol) = 2.27 x 10^-3 mol
we see that there is 1
mole of Ag per 1 mole of AgCl so:
moles Ag = 2.27 x 10^-3
mol
The molarity is simply
the ratio of number of moles over volume in Liters, therefore:
Molarity = 2.27 x 10^-3
mol / 0.0977 L
<span>Molarity = 0.0233 M</span>
Answer:
102g of crystals
Explanation:
When the Cr(NO₃)₃⋅9H₂O is dissolved in water at 15°C, the maximum mass that water will dissolve in the equilibrium is 208 g per 100g of water. When you heat the water, this mass will increases.
In this problem, at 35°C the water dissolves 310g in 100g of water, as in the equilibrium at 15°C the maximum mass is 208g, the mass of crystals that will form is:
310g - 208g = <em>102g of crystals</em>
<em>-Crystals are the Cr(NO₃)₃⋅9H₂O that is not dissolved-.</em>
I hope it helps!
Copper choruses purpose is its used as a catalyst for organic and inorganic reactions , mordant for dyeing and printing textiles, pigment for glass and ceramics, wood preservative, disinfectant, insecticide, fungicide, and herbicide. (Not sure if you want the actual purpose of water or not)
Answer:
A- beryllium
B- calcium
C- magnesium
Explanation
NOTE: all element in group 2 have 2 balance electrons
First let’s start with B- number of electrons= number of protons which is equal to the atomic number. therefore, the answer is calcium as it’s atomic number is 20
C- magnesium will have three energy levels considering it has 12 electrons (2,8,2).
A- beryllium is the lightest one in group 2 as it has the atomic mass of 9.0122.