To solve this problem we will use the linear motion kinematic equations, for which the change of speed squared with the acceleration and the change of position. The acceleration in this case will be the same given by gravity, so our values would be given as,

Through the aforementioned formula we will have to

The particulate part of the rest, so the final speed would be



Now from Newton's second law we know that

Here,
m = mass
a = acceleration, which can also be written as a function of velocity and time, then

Replacing we have that,


Therefore the force that the water exert on the man is 1386.62
A. Diagram A
B. Diagram C & D
C. Diagram B
D. Diagram C & D
E. Diagram B
F. Diagram C & D
These are simplified representations of an object's body and the force vectors acting on it. Some of the main forces that are involve are normal force, friction, push or pull and gravity.
Answer:
The relative uncertainty gives the uncertainty as a percentage of the original value. Work this out with: Relative uncertainty = (absolute uncertainty ÷ best estimate) × 100%. So in the example above: Relative uncertainty = (0.2 cm ÷ 3.4 cm) × 100% = 5.9%. The value can therefore be quoted as 3.4 cm ± 5.9%.
Explanation:
hope it helps :)
I think it’s going to be the 2nd one
Answer:
4.1666666 seconds
Explanation:
100 divided by 24 will give you about 4.1666666 seconds or 4 1/6 seconds. Hope it helps!