Answer: mass = 48.47 kg.
Explanation:
Formula : Weight = mg , where m = mass of body , g= acceleration due to gravity .
Given: Weight = 475 N

Substitute all values in formula , we get

Hence, his mass = 48.47 kg.
"As frequency increases, wavelength decreases. Frequency and wavelength are inversely proportional. This basically means that when the wavelength is increased, the frequency decreases and vice versa. Wavelength is described as the distance between a trough to a trough or a crest to a crest."
I'd recommend paraphrasing it tho.
Answer: a) 112.88 * 10^3 N/C; b) The electric field point outward from the center of the sphere.
Explanation: In order to solve this problem we have to use the gaussian law so we use a gaussian surface at r=0.965 m and the electric flux is equal to Q inside/εo
E* 4*π*r^2= Q inside/εo
E= k*Q inside/r^2= 9*10^9*(6.53+5.15)μC/(0.965)^2=122.88 * 10 ^3 N/C
Answer:
The speed of sound in air is not affected by the temperature
Explanation:
It just isn't™
Answer:
v=5.86 m/s
Explanation:
Given that,
Length of the string, l = 0.8 m
Maximum tension tolerated by the string, F = 15 N
Mass of the ball, m = 0.35 kg
We need to find the maximum speed the ball can have at the top of the circle. The ball is moving under the action of the centripetal force. The length of the string will be the radius of the circular path. The centripetal force is given by the relation as follows :

v is the maximum speed

Hence, the maximum speed of the ball is 5.86 m/s.