Answer:
C = 4,174 10³ V / m^{3/4}
, E = 7.19 10² / ∛x, E = 1.5 10³ N/C
Explanation:
For this exercise we can calculate the value of the constant and the electric field produced,
Let's start by calculating the value of the constant C
V = C
C = V / x^{4/3}
C = 220 / (11 10⁻²)^{4/3}
C = 4,174 10³ V / m^{3/4}
To calculate the electric field we use the expression
V = E dx
E = dx / V
E = ∫ dx / C x^{4/3}
E = 1 / C x^{-1/3} / (- 1/3)
E = 1 / C (-3 / x^{1/3})
We evaluate from the lower limit x = 0 E = E₀ = 0 to the upper limit x = x, E = E
E = 3 / C (0- (-1 / x^{1/3}))
E = 3 / 4,174 10³ (1 / x^{1/3})
E = 7.19 10² / ∛x
for x = 0.110 cm
E = 7.19 10² /∛0.11
E = 1.5 10³ N/C
This is called vaporization.
hope this helps :)
Answer:
the correct answer is A
Explanation:
In an Einstein-type analysis, the photon is absorbed, it loses all its energy, therefore the electron must receive all or none of the energy of the incident photon. In a type of inelastic shock.
Let's analyze the different answers
A) true. In photon it is completely absorbed or passes without interaction
B) False. The photon must change energy, but in this case there is no absorption of the photon
C) False. In the insistent analyzes, the quantization of the electron in discrete states is not mentioned.
Therefore the correct answer is A
Answer:
the ionosphere
.......................................................
Answer:
no not always sometimes they react at all so false I hope I helped :)