N=N₀*2^(-t/T)
N₀=200 g
T=10 d
t=30 d
N=200*2^(-30/10)=25 g
25 g will remain
Answer:
Yes
Explanation:
They are a unique type of eukaryote because they lack an important organelle: mitochondria. Mitochondria are essential for producing cellular energy in most eukaryotic cells. However, due to its habitat, it is able to acquire energy from a process called sulfur mobilization.
They are significant because they challenge the idea that eukaryotes need mitochondria to be classified as eukaryotic. However, they have other membrane-bound organelles such as a nucleus and Golgi apparatus, meaning they remain eukaryotic.
Research suggest they lost their mitochondria over time, rather than never having had them throughout their ancestry.
Because of all these reasons, they still meet the definition of a eukaryote.
<span>Energy is absorbed and then released to form an emission line.
When electrons absorb energy they increase there energy level. This is only temporary and the excited electron then relaxes back down to its original energy level releasing energy.
The energy is released in form of EM radiation of a specific frequency depending on the element and how many energy levels the electron relaxes.
This forms an emission line.</span><span />
The P-H bond is polar and the molecule is asymmetric.
Non-polar bonds cannot produce polar molecules and symmetric bonds result in even distribution of charge, so no net charge is observed.
Answer with Explanation:
Different versions of a gene are called alleles. Alleles are described as either dominant or recessive depending on their associated traits. Since human cells carry two copies of each chromosome they have two versions of each gene.