Answer:
The more concentrated acetic acid buffer has a better buffer capacity because requires more moles of acid or base to change the pH than a more diluted acetic acid buffer.
Explanation:
Buffer capacity is defined as the moles of an acid or base that are needed to change the pH of a buffer in 1 unit.
A more concentrated solution of acetic buffer contains more moles of the acid per liter of solution. A solution that contains more moles of the acetic ion or the acetic acid requires more moles of base or acid to change the pH, that means:
The more concentrated acetic acid buffer has a better buffer capacity because requires more moles of acid or base to change the pH than a more diluted acetic acid buffer.
Nitrous acid, hno2, has an acid dissociation constant - ka of 7. 1 ✕ 10-4. what are [h3o ], [no2-], and [oh -] in 0. 40 m hno2 - 4829 M [OH^-] = 1.439 x 10^-14 M
The acid dissociation constant (Ka) is used to differentiate between strong and weak acids. Strong acids have very high Ka values. The Ka value is determined by examining the equilibrium constant for acid dissociation. The acid dissociates more readily as the Ka increases.
The original molecular definition of an acid, according to Arrhenius, is a molecule that dissociates in an aqueous solution, releasing the hydrogen ion H+ (a proton): HA A + H+. acid dissociation constant is an equilibrium constant for this dissociation reaction.
To learn more about acid dissociation constant please visit -
brainly.com/question/4363472
#SPJ4
Educated Guess Here!
Since Br-80 does not exist, maybe that means Br-79 or Br-81 have very unequal abundances. For example, Br-79 may have 75% abundance whereas Br-81 may have 25% abundance.
The cnidarias life cycle has 2 life cycles polyp and medusa